

Precision Grinding Solutions

Catalogue No. 5

Dressing tools

WINTER diamond tools for dressing grinding wheels

Catalogue No. 1: Automotive, Turbines, Bearings

WINTER Diamond and cBN Tools for the Automotive, Turbine and Bearing Industries

Catalogue No. 2: Tools

WINTER Diamond and cBN Tools for the Tools Industry

Catalogue No. 3: Flat and Crystal Glass

WINTER Diamond Tools for Machining Flat and Crystal Glass

Catalogue No. 4: Electronics, Photovoltaics , Optics, Ceramics and CompositesWINTER Diamond and cBN Tools for the Electronic and Photovoltaic Industries, for Machining Optical Glass, Ceramics & Composites

Catalogue No. 5: Dressing Tools

WINTER Diamond Tools for Dressing of Grinding Wheels

Catalogue No. 6: Standard Catalogue

WINTER Stock Programme for Diamond and cBN Tools

Dressing Tools

WINTER diamond tools for dressing grinding wheels

Table of Contents

For quick and easy navigation please use the quickfinder at the page margins, as well as the index at the end of this catalogue.

WINTER Facts	6
A good Connection	6
Saint-Gobain	6
WINTER brand	7
Snapshots of a long history	8
Innovations: Yesterday's vision of the Future	10
Your best solution	12
Diamond profile roller dressers for high	
precision dressing of grinding wheels	14
Production of UZ profile	
roller dressers	16
Using profile roller dressers	18
Dimensions that can be produced	20
Minimum deviations	20
Standard tolerances	21
Types UZ, TS, SG	22
Factors that affect the service life of	
diamond roller dressers	23
The effect on the grinding behaviour	23
Machining conditions	24
Contact detection	25
Assembly and removal of roller dressers	26
Troubleshooting	27
Checklist for profile roller dressers	28
Dressing tools for the machining of gear teeth	n 30
Manufacturing process	32
Dressing tools for gear generation	32
Plated gear tools for honing and	
continuous generation and profile grinding	32
Dressing tools	33
Continuous gear generation grinding	
Honing processes, continuous hob	
arinding and profile arinding	34

Machining bevel gears	. 34
Complete solutions	. 35
External cylindrical grinding, bore	
grinding and top-and-bottom grinding	
operations	. 35
Gear grinding	. 35
Checklist for the manufacture of a new	
dressing tool for hob grinding	. 36
Checklist for new manufacture of a dressing	
wheel for honing and continuous profile grinding.	. 37
CNC Dressing Discs	. 38
Manufacturing process	. 40
Types of rotary CNC dressing discs	. 40
Which one to choose?	41
SG dressing discs	. 42
General	. 42
Range of SG dressing discs in stock	. 43
TS dressing discs	. 46
General	. 46
TS dressing discs held in stock	. 47
PCD/CVD/MCD dressing discs	. 48
General	. 48
Designs with CVD held in stock	. 49
SD dressing discs	. 50
UZ dressing discs	51
DDS dressing discs	. 52
General	. 52
DDS dressing discs held in stock	. 53
Profile examples	. 53
Advantages of CNC dressing of diamond grinding	
wheels with DDS dressing discs	. 54
Sample applications	. 54
Checklist for dressing discs	. 57

WINTER

Stationary dressing tools
Information on choosing your tool60
Diamond Fliesen® tools62
Ti-Tan & Furioso: The new generation of particularly
wear-resistant diamond Fliesen® tools62
D25 MCD needle blade dressers64
D30 CVD needle blade66
D35 CVD needle blade67
Needle blade with natural diamond68
Standard blade with diamond grit70
Toolholders and shanks for diamond Fliesen® tools 73 $$
Single point dressers74
D12 single point dressers with MCD needles74
D30 single point dressers with CVD needles75
D53 single point diamond dressers with PCD plates . 76 $$
Profile diamond, ground77
Single-point dressers with natural diamonds80
Rondist rotatable tools with diamond or CVD82
PCD and CVD insert dressers83
Toolholders and shanks for common
machine types85
Multi-point dressers88
D21 multi-point dressers with natural diamond 88
Igel® multi-point dressers89
pro-dress® multi-point dressers91
Technical notes
Dressing side feed and positions in relation to
the grinding wheel for stationary dressing tools 93
Checklist for stationary dressing tools96
Ancillary dressers
Dressing tools for vitrified bonded
grinding wheels100
Dressing tools for resin-bonded
grinding wheels102

Electroplated and sintered metal bond	
dressing tools	02
Dressing tools for diamond and	
cBN grinding wheels1	03
WINTER dressing unit	03
Cleaning and sharpening stones1	03
Manual dressing tools	04
D20 manual dressing tool with natural	
diamond in an electroplated bond1	04
Multigrit manual dressing tool with natural	
diamond in a sintered metal bond1	05
Dressing parameters	06
Conditioning	80
Characteristics of conditioning processes1	80
Process parameters1	09
Infeed $\boldsymbol{a}_{_{\text{ed}}}$ when dressing with stationary	
dressers and CNC dressing discs1	09
Overlap ratio, U _d , for stationary and	
CNC dressing tools	10
Infeed, $\boldsymbol{\alpha}_{\text{ed'}}\text{when dressing with profile rollers}$	10
Speed ratio, $\boldsymbol{q}_{\text{d'}}$ of rotary dressing tools	111
General1	13
Other influences on active surface roughness	
and workpiece surface finish when using	
profile roller dressers	13
Contact detection	114
Compendium1	16
Service1	18
Glossary1	20
Index	30
Contact1	39

A good Connection

Always close to the customer and customer-focused, our diverse market presence worldwide reflects the strength of a global player. Saint-Gobain's businesses are spread over 64 countries and new locations are being added frequently. Activities are clearly structured to ensure operational leadership. In Abrasives alone, over 16,000 people are employed. The company is the only manufacturer to offer a comprehensive product range of abrasives and dressing tools for almost all fields of industry. WINTER, as the premium brand for diamond and cBN grinding products, is one of the most well established and respected names in the market. Our combination of quality products, expertise and service, together with the international network of the parent company Saint-Gobain, is the key to success; WINTER grinding tools go with you worldwide, and lead you to your goals.

Saint-Gobain...

- ...was established in 1665 to supply glass for the Hall of Mirrors in the Palace of Versailles.
- ...kits out every second car in Europe with window glass
- ...presently has more than 190,000 employees
- ...generates € 37.8 billion annual turnover

High Performance Materials

Grinding Tools WINTER No.1 Worldwide

Bonded Abrasives

Flat Glass freeglass

No.1 in Europe. No.3 Worldwide

Industrial Super Abrasives

Glass Packaging

G.ASSOUTION No.1 in Europe, No.3 Worldwide

Coated Abrasives

Construction Products

Insulating Materials No.1 Worldwide

Plaster/Plaster Boards No.1 Worldwid

Thin Wheels

Construction Products

Ceramics and Plastics No. 1 Worldwide for Thermal and

No.1 Worldwide in Cast Iron Pipes

Pipes

/etrotex

Reinforcement Materials No.1 Worldwide

Industrial Mortar No.1 Worldwide in Tile Adhesives

karcher Building Distribution

No. 1 Worldwide in Tiles, No. 1 in Europe in Construction Material and Industrial Woodworking

Mechanical Applications

Exterior Siding

No. 1 in USA for Exterior Siding No. 3 in USA for Roofing

Worldwide Expertise

Saint-Gobain is in the top one hundred largest industrial groups in the world and is leading in the production of glass, high performance materials and construction products. Two major milestones stand out in the Saint-Gobain Group's long history; it was established in 1665 by Colbert under Louis XIV, then, over 300 years later, Saint-Gobain and Pont-à-Mousson merged in 1970. WINTER joined the group in 1996. Today, the group invests € 390 million per year in research and development and files around 300 patents per year, to support its reputation for innovation and discovery.

Stationary Dressers

WINTER

Facts

Profile Dressers

CNC

Dressing

Service Contact

The WINTER Brand:

For over 160 years WINTER has been a worldwide synonym for high-quality diamond and cBN grinding tools for industrial production. As pioneer and trend-setter, WINTER has been actively involved in the development of the success story of grinding, as well as in the production of synthetic diamonds.

Custom-made Solutions - the key to success

Over 75% of all WINTER products are developed in close cooperation with our customers. The results are tailored grinding solutions that perfectly fit your special requirements. Our expert teams would also like to help you. Together we will meet your technical challenges.

Market Leader - in front through quality

In Superabrasives, WINTER is No. 1 in Europe with quality products and services. In Europe, over 500 employees in three production sites take care of our customers' needs. Worldwide, over 2,000 people are employed in our global business.

INNOVATIONS

To this day, the WINTER philosophy is closely connected to innovation and technical progress. We thank our customers for over 160 years of momentum, challenges and confidence. And in the future our next generation of innovations will ensure your success.

PRECISION

From ACCURACY to Z-AXIS - the WINTER precision alphabet spells the suitable solution for your needs. Profile accuracies below 1 µm and a surface finish in the nanometer range are achieved regularly. You can trust WINTER.

WINTER

PERFORMANCE

The WINTER performance package contains top quality precision grinding tools, comprehensive service and individual customer care - which ranges from best grinding tool selection through to process optimisation. Benefit from our full service, and make use of our leading technical expertise to increase your profitability.

QUALITY

Since the foundation of the company, WINTER has stood for quality at the highest level. It begins with the first customer contact, and covers the identification of appropriate tool specifications, manufacturing, customer support and the final optimisation of your production process. **WINTER quality: Satisfaction guaranteed!**

Quality, Environmental Protection and Safety

As a responsible manufacturer of quality grinding tools, WINTER production is eco-friendly and avoids waste of precious resources according to the latest international standards and certification requirements. WINTER is certified to ISA 9001 (Quality Management), ISO 14001 (environmental management) and OHSAS 18001 (health and safety management). All rotating WINTER tools bear the OSA safety seal (OSA: Organization for the Safety of Abrasives), granting WINTER the customers' highest safety tool in application.

WINTER Facts

Profile Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Glossary

Snapshots of a long history

WINTER was established in 1847 by Ernst Winter as a family-owned company. We still adhere to the original goal of developing ultra-hard crystal tools of the highest quality. Our claim is to be the best. In numerous fields of application for diamond and cBN grinding tools we have been pioneers, and today we still follow this way as trend-setters and the technology leader.

Ernst WinterGoldsmith and diamantaire, started his diamond tool workshop in 1847.

Profile Dressers

Gear Dresser:

CNC Dresser

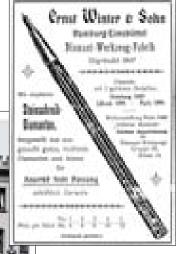
Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

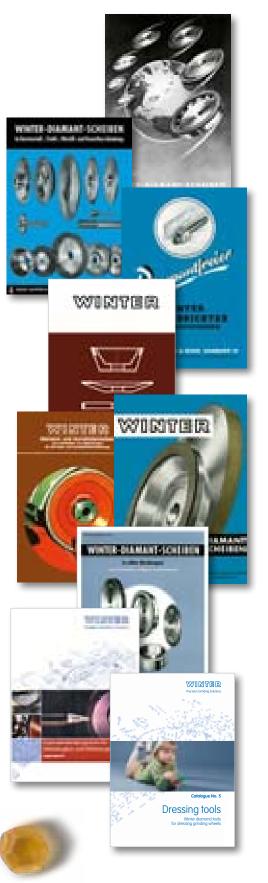
Laser reflectors ground with WINTER diamond tools enable the most accurate astronomic and geographic measurements.



ERNA WINTER SOUR COLUMN

Success from the beginning

Former letterhead and contemporary advertisement of WINTER with images showing medals received at important exhibitions.



Celebrities

Even Helmut Schmidt (Federal Republic of Germany's former Chancellor) acted as a WINTER "diamond maker" in 1983.

Posters and Brochures in the course of time

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

WINTER

Facts

Profile **Dressers**

CNC

Stationary Dressers

Ancillary

Dressing

Innovations: Yesterday's vision of

WINTER bridges the combination of inventive skills, creativity, identification of challenges and the ambition to meet our customers' expectations: WINTER developments of the past are found in industrial museums. Yesterday's vision of the future is today's standard. We are committed to over 160 years of company history: Today and in the future, we work hand in hand with our customers on innovations and their ecomomical implementation.

1847

WINTER produced lithography diamonds, replacing the conventional steel tips.

2008

WINTER offered metal bonded tools with internal cooling for creep-feed glass edging.

1969

As the first grinding tool manufacturer worldwide, WINTER presented cBN grinding tools with a special resin bond (KSS) for HSS tool grinding.

1962

WINTER UZ rotary dressers hit the market. Produced in a reverse plating process, they allow tightest tolerances.

1935

WINTER produced the first phenolic bond grinding wheel to replace previously used grinding wheels with loose, hammered or rolled-in grain.

2001

WINTER introduced special cutting wheel products for slicing advanced ceramics like SiC.

grinding wheel dressable with a diamond rotary dresser. 1975 WINTER DMC diamond grinding

With Q-Flute+Dress, WINTER offered the first resin bonded

> wheels and BMC cBN grinding wheels came into the market: WINTER MC grinding wheels allow cost-effective profile grinding for difficult to machine work pieces. They also reduce thermal effects of the near-surface microstructure and assure extremely long profile lifetime. WINTER DMC and BMC grinding wheels can be profiled by crushing directly on the grinding machine.

1548. from L. innovatus, pp. of innovare "to renew or change", from in- "into" + novus "new"

1988

New super-light cutting wheels with carbon fibre bodies were patented.

WINTER SG-CNC rotary dressers conquered the market. They have made dressing of vitrified cBN grinding wheels possible.

WINTER was the first in Europe producing grinding tools with synthetic diamonds. In combination with WINTER special resin bonds, full performance benefits were achieved.

Contact

Service

1971

At the European Machine Tool Exhibition WINTER showed for the first time a novel grinding wheel type that met the demand for short grinding cycle times. The structure of metallic and nonmetallic bond components allows the efficient grinding of tungsten carbide and steel combinations. (M+789).

2003

WINTER developed the DDS (Diamond Dressing System), permitting the dressing of vitrified and resin bonded grinding wheels directly on the production machine. Until then, it was performed on external machines. Due to its free standing layer, outstanding profile grinding capability is achieved.

1992

New standards are set with the "34SG" series in the field of laminated safety glass and fire-resistant glass machining.

1929

WINTER started producing diamond micro-grain by the sedimentation process.

1875

Delivery of WINTER diamond particles to Zeiss Jena, enabling the engraving of 150 lines per millimeter.

valtilon

In general linguistic usage as a nonspecific term in the sense of new ideas and inventions and their conversion to economic use.

2006

N7 as a glass-ceramic bond system was introduced to the market. This bond can be precisely engineered to meet individual customer application requirements: Very high bond-hardness, optimised wetting of the grains and perfect development of bond bridges enable the creation of very high porosity for cool grinding and extremely long tool life.

1950-1954

WINTER developed a large variety of electroplated tools: Files, grinding pins, cutting wheels, drills...

2008

WINTER tools "Ti-Tan" and "Furioso" are a new generation of extremely wear-resistant stationary dressers.

1982

The patented dressing process "TDC" (Touch Dressing cBN) was developed by WINTER.

1977 / 78

WINTER presented the special bond "VF/VFF" for grinding and finishing polycristalline diamond and cBN materials.

1996

For four generations the company, founded by Ernst WINTER in 1847, was familiy-owned. In 1996 it was taken over by the French Saint-Gobain group.

2001

"Tiger" caused a stir with a new revolutionary grinding wheel geometry for narrow tooth gaps in saw manufacturing. WINTER

Profile Dressers

Gear

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Glossary Contact

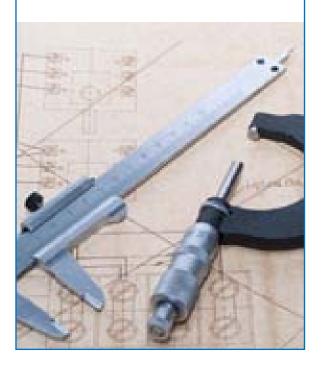
WINTER Facts

Profile Dressers

Gear

CNC

Your best solution


WINTER diamond tools gain great recognition in the fields of quality, performance and cost effectiveness. This is no coincidence, as WINTER is not limited to manufacturing excellent grinding tools: more than 75% of the cases are tailor-made solutions, developed in close cooperation with the customer. This successful engineering is based on a modular performance package, specifically equipped according to individual needs.

Tailor-made products

Optimised grinding solutions for your specific application provide the greatest benefit: In the end, you generate cost savings through more productivity, less down time, and better quality.

Each one of your technological challenges is an incentive for our product managers and our application engineers to achieve the best grinding results. Please contact us.

Besides the high percentage of custom-made solutions, WINTER offers a comprehensive range of stock products - and can supply these short term straight to your production line.

Focused on the goal ahead

Comprehensive technical advice in all questions about WINTER products and grinding processes.
Our field sales force and our customer service are at your disposal.

Advice

Expertise

Advantage in accumulated knowledge:
Seminars about current grinding issues as well as training programs matching our customers requirements.

Dressing Parameters

The cream of the crop

In order to meet your production-oriented challenges, take advantage of our dedicated specialists: In the R&D department and the European Grinding Technology Centre about 50 scientists are at your disposal for developing grinding tools and processes.

Solution

Process Optimisation

Fine Tuning

Our application engineers and our product developers will help you. Either at your premises, or in our EGTC (European Grinding Technology Centre), where we can optimise your production process, without interfering with your workflow.

Please ask your sales advisor - contact details on the last page. WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Diamond profile roller dressers for high precision dressing of grinding wheels

Rotating profile roller dressers, also known as rotary truers, have the same profile as the workpiece.

These dressing tools are particularly suitable for complex profiles in mass production.

The advantages of profile roller dressers are

- Reduction of dressing costs per workpiece
- Optimized utilization of machine capacity
- Automation of the dressing process
- Repeatable high precision with low workpiece rejects
- Rapid incorporation of complex profiles in the grinding wheel

Information

Further information on applications and products can be found at www.winter-superabrasives.com

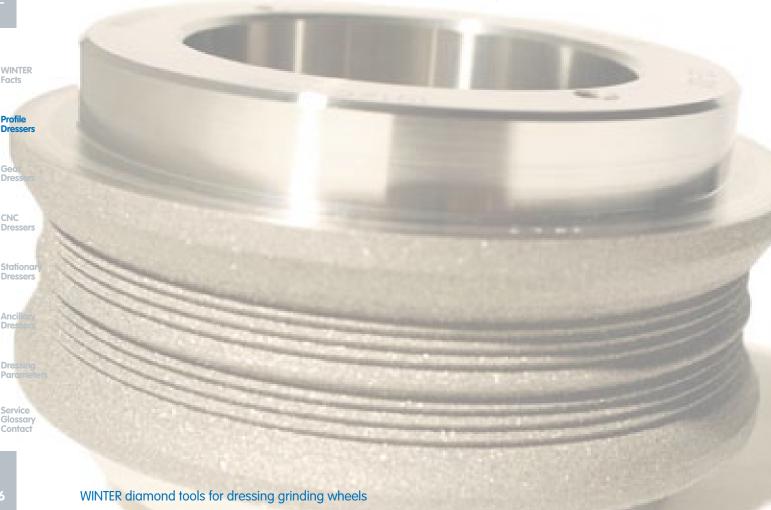
- 16 Production of UZ profile roller dressers
- 18 Using profile roller dressers
- 20 Dimensions that can be produced
- 20 Minimum deviations
- 21 Standard tolerances
- 22 Types UZ, TS, SG
- 23 Factors that affect the service life of diamond roller dressers
- 23 The effect on the grinding behaviour
- 24 Machining conditions
- 25 Contact detection
- 26 Assembly and removal of roller dressers
- 27 Troubleshooting
- 28 Checklist for profile roller dressers

Profile

CNC

Production of UZ profile roller dressers

Most WINTER profile roller dressers are produced by electroplating using the reverse plating process (these are UZ rollers). The production process is illustrated on these pages.


Profile roller dressers with broader tolerances, namely those with infiltrated bonds (TS rollers) and those made by positive electroplating (SG rollers) are more robust tools.

Design: Precision from the very start! CAD drawings created in SOLID EDGE® are linked to the programs of the production and measuring machines.

Manufacturing the form ring Depending on the profile shape, the ring is either CNC turned, or manually plunge turned with a profile tool: the high precision profile is created on the inside diameter of the form ring.

The diamonds are secured to the ring in a galvanic bath.

This key step in the production process requires patience and technical know-how.

The correct core for the profile is then inserted and fixed to the diamond/nickel layer using a casting technique. The form ring is turned off and the bore and contact surfaces are ground.

Creating the test piece

After a grinding wheel has been profiled with the roller dresser, a test piece is ground and inspected: Does the ground test piece meet the requirements? This is where the new roller dresser proves itself for the first time.

Measuring the profile accuracy of the test pieces

Adherence to workpiece or tool drawing profile is verified on state of the art measuring machines. We work in close cooperation with our discerning customers, agreeing measuring instructions and test protocols with them and discussing their wishes concerning the measuring procedure.

Mounting the profile roller dresser

Sensitivity and a respect for detail: profile roller dressers are manually fitted onto the customer's arbor when requested – a job that we are very happy to do, since keeping to the tightest running tolerance has a crucial effect on the working life of the tool.

WINTER Facts

Profile Dressers

Gear

CNC Dressers

Stationary Dressers

> Ancillary Dressers

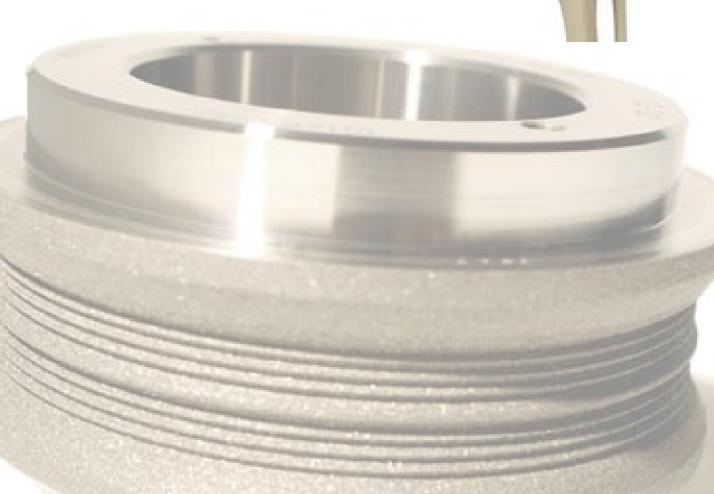
Dressing Parameters

> Service Glossar

Using profile roller dressers

Our greatest claim is that we offer innovative solutions for our customers in the form of optimized high-performance diamond dressing tools – precisely matched to their particular needs and requirements.

Therefore in this chapter you will not find any standard articles available ex stock, but a survey of typical applications and information on feasibility and tolerances.



Cutting tool industry

Shorter process times are a key requirement in the cutting tool industry. WINTER profile roller dressers are the means to high precision and rapid cycle times.

Medical technology

High precision grinding and dressing are taken as a matter of course in this industry. It is therefore obvious that WINTER profile roller dressers are used here.

WINTER Facts

Protile Dresser

Gear

CNC Dresse

Stationa

Ancilla

Dressing

Paramete

Glossan

require the tightest tolerances - here high quality is combined with large quantities. WINTER profile roller dressers help to meet these demands.

ary turbines for electricity generation require exactly the same attention regarding power, good value and safety.

You can meet the challenges of your market by using WINTER tools.

The roller bearing industry

Since a roller bearing has a large number of different components, a wide variety of demands are made on the dressing tools that are used.

WINTER profile roller dressers offer economical, highly precise dressing with excellent results.

Wind farms

Renewable energy is the challenge of the times and will characterize future markets. Continuing demands for higher efficiency require high-quality tools and partners who go all the way into the future with you.

Profile

WINTER

Dressers

Gear

CNC Dressers

Stationary Dressers

Ancillary Dressers

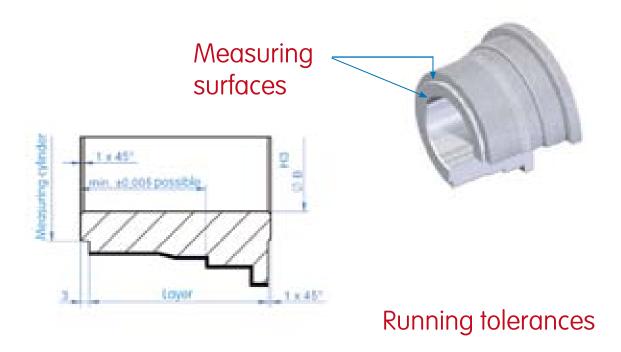
Dressing Parameters

WINTER

Profile

CNC

Stationa Dressers


Service Glossary

Dimensions that can be produced

The dimensions and tolerances that can be obtained for different profiles are summarized on the next two pages. As a general rule, WINTER diamond roller dressers have a 3 mm clocking ring on one face and a 1 mm integral spacer on the other face. The measuring cylinder allows the concentricity of the mounted diamond roller dresser to be checked, as it runs to within 0.002 mm concentric to the bore and diamond coating of the roller dresser. The working strip prevents a spacer ring or flange from coming into direct contact with the diamond coating. These features add 4 mm to the width of the diamond

Standard tolerances

Info

As a basic rule, the diameter of a diamond roller dresser is not dependent on the diameter of the workpiece. What matters is that the profile of the roller matches that of the workpiece.

Installation dimensions of a roller dresser:

width over diamond coating = grinding wheel width +3–4 mm overall width of the roller dresser = diamond coating width +4 mm

Please note:

To achieve profile stability, a cylindric extension should be given to the profile edge, if the geometry is concave or tapered.

Free size tolerances to DIN ISO 7861 m

WINTER

Profile Dressers

Gear

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary

Profile

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Types UZ, TS, SG

Туре	Manufacture	Bond	Grit distribution	Grit density
UZ	Reverse process	Electroplated	Statistical	Maximum
TS	Reverse process	Infiltrated	Statistical/ controlled	Maximum/ controlled
SG	Positive process	Electroplated	Statistical	Maximum

UZ version

The diamond grit is statistically distributed over the surface of the profile roller dresser. The distance between the grits is determined by the grit size used. The dense coating of diamonds means that the diamond content is greater than in comparable profile roller dressers with manually applied diamonds. The manufacturing process is largely independent of the shape of the profile. Concave radii ≥ 0.03 mm and convex radii ≥ 0.08 mm are possible.

 \rightarrow For use in applications with the most stringent surface and geometry requirements since this type can achieve profile accuracy of $\geq 0.8 \ \mu m$.

TS version

In contrast with the UZ version, the diamonds here can also be set according to a defined pattern. This requires certain minimum diamond sizes so not all profile shapes are available in this version.

The concentration of the diamond coating can be influenced by changing the distance between the diamonds. Profile accuracy is achieved by grinding the diamond coating.

Convex and concave radii ≥ 0.3 mm are possible.

The diamond coating can be re-machined, depending on its condition.

→ For use in applications with very stringent surface and geometry requirements; profile accuracy of ≥ 2 µm can be achieved.

SG version

The diamond grit is statistically distributed. Convex and concave radii ≥ 0.5 mm are possible.

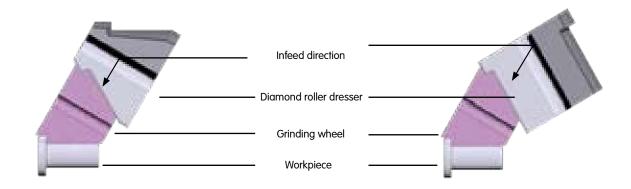
→ For use on prototypes (short delivery time but limited service life) where the surface and geometry requirements are I lower; dimensional accuracy is achieved by grinding the diamond coating.

Factors that affect the service life of diamond roller dressers

The main influencing factors include:

- The rigidity of the machine and dressing device
- The runout of the roller dresser and holding fixture
- Suitable cooling during dressing
- Specification of the grinding wheel
- Dressing parameters
- Diamond pattern and grit size
- Type of roller dresser
- Dimensional and form tolerances

The effect on the grinding behaviour


The roller dresser - grinding wheel - workpiece arrangement

The behaviour of a grinding wheel depends on the structure and sharpness of the grit on the cutting surface and the kinematic cutting parameters as well as length and depth; it is also affected by

- The dressing parameters
- The diamond roller dresser grinding wheel workpiece arrangement
- The grit size used.

The effective peak-to-valley height is an important feature of grinding wheel topography. As this increases, the cutting performance of the grinding wheel and the surface roughness of the workpiece also increase.

The axial arrangements shown below for angle approach grinding are the most practical. They create a greater effective peak-to-valley height at the flat shoulders. In consequence there is less chance of burning.

The axes of the roll and the grinding wheel are parallel to each other but at an angle to the axis of the workpiece. The dressing infeed is at right angles to the grinding wheel axis.

The axes of the roll and the grinding wheel are not parallel to each other. The dressing infeed is at right angles to the grinding wheel axis. The profile of the diamond roller dresser is the same as that of the workpiece.

The roller dresser/grinding wheel speed ratio $q_{d'}$ the dressing infeed per grinding wheel revolution f_{rd} and the number of spark-out revolutions n_{a} (i.e. the number of revolutions of the grinding wheel with no further dressing infeed) have been found to be suitable control parameters for the conditions during dressing that affect the peak-to-valley height. Further information can be found in the chapter entitled 'Dressing parameters'.

WINTER Facts

Profile Dressers

Gea Dresser:

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Profile

Machining conditions

Drive capacity of the dressing spindle

For dressing with diamond roller dressers, provision has to be made for relative motion between the roller dresser and the grinding wheel. This relative motion is defined as the difference between the circumferential speeds of the diamond roller dresser and the grinding wheel.

Diamond roller dressers must be mounted on a separate drive in order to generate the relative speed in the circumferential direction. The design of the drive depends on the following variables:

- The specification of the grinding wheel to be dressed
- The specification of the diamond roller dresser
- The dressing infeed
- The speeds that are required
- The type of dressing (uni-directional, counter-directional)

The required spindle drive power is typically 20 W/mm of developed roller dresser contact width. This value applies for dressing a medium-hard grinding wheel with special fused alumina in a vitrified bond.

To obtain a reproducible dressing result, the roller dresser drive must be designed in such a way that the speed ratio between the diamond roller dresser and grinding wheel is constant. If the drives are separate the grinding wheel motor output must be aligned with that of the roller dresser motor. In order to guarantee a constant speed ratio in practice, it may be necessary to install greater drive capacities in the dressing unit than those obtained using the basis of calculation referred to above.

Machine mounting

The static and dynamic rigidity of the dressing system has a crucial influence on the dressing performance. The greatest system rigidity is achieved by installing bearings on both sides of the roller dresser. The high normal forces that occur with profile roller dressers require the roller dresser to have bearings on both sides.

In order to counteract the build-up of circumferential waviness on the grinding wheel during dressing, the dressing unit must possess radial rigidity. When dressing with continuous-path controlled diamond dressing wheels, the normal forces are considerably lower. In this case bearings on one side only (flying bearings) can be considered.

Running truth and vibration

Special attention must be given to the geometric runout of the roller dresser and its balance quality. The tolerances for high precision profiles of 0.002 mm must be observed; so the radial and axial run-out of the diamond roller dresser spindle must not exceed 0.002 mm. Because of the rigidity requirements, the largest possible arbor diameter should be selected provided that it is still in proportion to the outer diameter. Bore diameters of Ø 40 to 80 mm are usual in the case of diamond roller dressers.

The required combination of tolerances between the roller dresser bore and the arbor is H3/h2. A fitting allowance of 0.003 to 0.005 mm enables the diamond roller dressers to be mounted and prevents running deviations in the diamond coating. The most frequent sources of vibration during dressing are rotating imbalances. An important requirement, therefore, is precise balancing of the roller dresser and arbor. The natural frequencies of the dressing system should also be known. Knowing these, it is possible to select the dressing parameters so that the rotation frequencies of the dressing spindle and grinding wheel do not coincide with resonance points in the dressing unit or the overall system.

Cooling

An adequate cooling system is essential, and coolant must be applied before dressing starts. The coolant flow rate and the pressure should be exactly the same as for grinding. In the case of complex profiles, particularly those with high shoulders, the coolant nozzle must be of a suitable design.

The speed at which the coolant leaves the nozzle should be as close as possible to the circumferential speed of the grinding wheel and the jet of coolant should be directed accurately onto the point of contact.

WINTER

The coolant nozzle for dressing must be mounted such that fluid is directed at the point of contact between dresser and wheel, in the direction of wheel rotation.

Optimally designed coolant nozzle grants controlled coolant jet

Contact detection

A high-precision dressing spindle is required when diamond profile roller dressers and path controlled form rolls are used to dress vitrified bonded cBN or diamond grinding wheels. A contact detection device monitors the point at which the roller dresser touches the grinding wheel and supervises the complete dressing cycle.

Contactless measurement using structure-borne noise signals which are displayed on the monitor enable dressing to be as economical as possible: this guarantees minimum loss of the grinding wheel layer together with maintenance of the maximum possible chip space.

Minimum material removal during dressing leads to a marked reduction in tooling costs. Continuous control of the dressing and grinding processes is an essential requirement for high process reliability.

For more information about contact detection please refer to chapter "Dressing parameters, contact detection".

WINTER Facts

Profile Dressers

Gear Pressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

WINTER Facts

Profile Dressers

Gear Dresser:

CNC Dressers

Stationary Dressers

Ancillary

Dressing Parameters

Service Glossary Contact

Assembly and removal of roller dressers

- 1. WINTER diamond roller dressers are manufactured with bore tolerance H3 to ISO Standard.
- The required tolerance of the holding fixture for the roller dresser is 0 to -0.002 mm.
 The maximum permissible radial and axial running error for the holding fixture is 0.002 mm.
- Absolute cleanliness is essential when mounting the roller dresser on the holding fixture.
 Do not use any lubricants. In order to facilitate assembly it is permissible to heat the roller dressers to no more than 50 °C in a water bath.

Please note: The arbor may also be cooled. The roller dressers must not be pressed or forced onto the holding fixture.

Obviously impact tools must not be used under any circumstances.

- 4. The spacer rings and bushes to be used for assembly must be < 0.002 mm plane parallel.
- 5. After assembly the radial and axial running of the roller dressers is determined using the measuring cylinder provided for the purpose or on the plane surfaces. Maximum permissible running deviations:

Radial 0.002 mm

= measuring surfaces

- When removing diamond roller dressers the roller dresser/arbor unit must be cooled down. Subsequently the roller dresser exclusively may be heated in warm water to 50 °C maximum.
- Before the first dressing operation the position of the dressing coolant nozzle must be checked and adjusted if necessary.

Please note: The coolant nozzle for dressing must be mounted in the direction in which the grinding wheel rotates. Dressing without coolant leads to premature destruction of the roller dressers. The design of the coolant nozzle for deep profiles should be adapted to the profile of the roller dresser.

Please note: The static roller dresser must not come into contact with the rotating grinding wheel as this will destroy its profile.

Troubleshooting

Symptom: Cause and corrective action: 1. Machine generates increased Imbalance or radial runout of the diamond roller dresser or noise when dressing grinding wheel, or excessive dressing forces. a) Correct imbalances and/or runout 1.1. Constant dressing noise b) Change direction of rotation from uni-directional to counter-directional c) Reduce dressing feed 1.2. Louder at the start, then gradually Arrangement is not rigid enough fading Reduce dressing forces (see 1.1) 2. Workpiece profile deviates from a) Grinding wheel too soft: Grinding wheel profile collapses target b) Grinding wheel too hard: excessive grinding pressure 3. Workpiece shows chatter marks Machine vibrations caused by: a) Inadequate bearing arrangement for the grinding spindle or holding fixture b) Inadequate rigidity of the machine or dressing unit c) Insufficient dressing spindle driving power d) Radial runout of the diamond roller dresser is too high 4. Deviating width dimension at slots a) Axial play in the grinding spindle or holding fixture bearings or ribs b) Diamond roller dresser has axial run out 5. Burn marks on workpiece a) Insufficient coolant supply (pressure, flow rate or nozzle position) b) Unsuitable grinding wheel structure and hardness c) Unsuitable workpiece – grinding wheel – diamond roller dresser arrangement d) Spark-out time too long, dressing feed too short e) Unsuitable speed ratio q_d selected 6. Increased surface waviness and a) Worn diamond coating on roller dresser peak-to-valley height b) Contaminated coolant c) Insufficient sparking out time when grinding

WINTER

Profile

Gear Dressers

> CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

WINTER

Checklist

Customer:

for profile roller dressers

Customer no.:
Machine: Machine type:
Current dressing tool:
Dressing unit: Arbor diameter (mm):
Arbor length (mm):
Workpiece: Workpiece drawing: (If available, file in .dxf, .dwg, .pdf or .tif format)
Surface finish desired:
Grinding allowance (mm / Ø):
Grinding wheel: Specification:
Dimensions: Diamond roller dresser: Greatest diameter allowed by the machine: Greatest roller dresser width allowed by the machine:
Parameters: Grinding wheel circumferential speed (m/s) or speed (rpm): Circumferential speed of roller (m/s)
or speed (rpm):
Counter-directional or Uni-directional at point of contact:
Radial infeed per dressing pass (a _{ed}):
Angular/straight plunge grinding:
Spark-out time/revolutions:

SAINT-GOBAIN Diamantwerkzeuge GmbH & Co. KG,

www.winter-superabrasives.com, plated@saint-gobain.com

Schützenwall 13-17, 22844 Norderstedt, Germany, Phone: +49 40 5258-0, Fax +49 40 5258-215

WINTER Facts

Profile Dressers

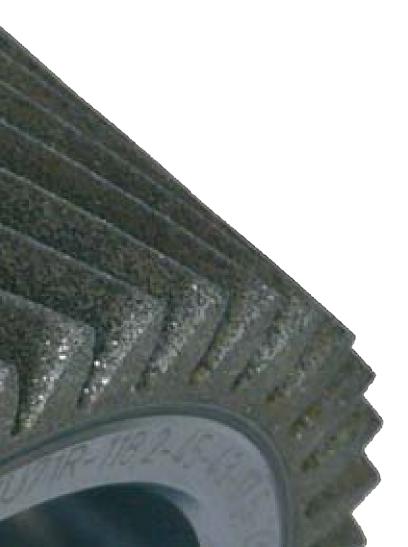
Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters


Dressing tools for the machining of gear teeth

High precision dressing tools are essential for accurate profiling and sharpening of grinding worms and honing rings. They determine the quality of the finished gears.

WINTER rotary diamond dressing tools for gear generation and honing are matched to individual needs and specifications. Therefore in this chapter you will not find any standard articles available ex stock, but a survey of

- Rotary single- and twin-taper dressers with plain roller dressers
- Full-profile roller dressers for small modules
- Roller dresser sets
- Plated gear tools (positive electroplated or produced with the double reverse plating process).

32 Manufacturing process

- 32 Dressing tools for gear generation
- 32 Plated gear tools for honing and continuous generation and profile grinding

33 **Dressing tools**

- 33 Continuous gear generation grinding
- 34 Honing processes, continuous hob grinding and profile grinding
- 34 Machining bevel gears

35 Complete solutions

- 35 External cylindrical grinding, bore grinding and top-andbottom grinding operations
- 35 Gear grinding
- 36 Checklist
 for the manufacture of a
 new dressing tool for
 grinding worms
- 37 Checklist for the manufacture of a new dressing tool for honing rings

Manufacturing process

Dressing tools for continuous generating grinding

Туре	Manufacture	Bond	Grit distribution	Grit density
HP	Positive process	Electroplated	Statistical	Maximum
VU	Reverse process	Electroplated	Statistical	Maximum

Plated gear tools for honing and continuous generating and profile grinding

Туре	Manufacture	Bond	Grit distribution	Grit density
SG	Positive process	Electroplated	Statistical	Maximum
VU	Double reverse process	Electroplated	Statistical	Maximum

WINTER Facts

Profile Dressers

Gear

Dresser:

Stationary Dressers

Ancillary Dressers

Parameter

Glossary

Dressing tools

Dressing tools

Continuous generating grinding

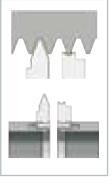
Single-taper dressing wheels (HP)

- Excellent, highly versatile tool design
- Dressing wheels are used in pairs, each with its own powered dressing spindle
- Dressing wheels can be independently angled and the optimum positioning of the dressing tools guarantees the highest gear quality
- The pitch of the grinding worm can be adjusted by changing the distance between the dressing wheels
- The profile depth of the grinding worm can be individually selected
- Can be used across different modules, if required
- Tooth root grinding can be integrated using additional design features
- Tools can be regenerated by regrinding or replating the body

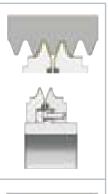
Twin-taper dressing wheels and chamfering rolls (HP or VU)

- A very good tool design where tooth root machining is required
- For small modules (< 1.5) we recommend the use of reverse electroplated profile roller dressers
- For larger modules (> 1.5) we recommend the use of positive electroplated profile roller dressers
- Both these dressing tools can be used with separately powered working spindles
- The positioning of the individual tools can be individually adjusted, but their design is dependent on the workpiece
- Positive electroplated (HP) tools can be regenerated by regrinding or replating the body

Roller dresser sets for single-pass dressing (HP)


- A very good tool design where tooth root machining is required
- Various roller dresser set configurations are available to optimize dressing paths and therefore allow shorter dressing times
- Dressing set designs are specific to each workpiece and are used on individually powered working spindles
- Proven rapid setup and tool change times
- Small module roller dresser sets can be reinforced at the tip diameter
- Tools can be regenerated by regrinding or replating the body

Full profile roller dressers (VU)


- An excellent tool design with low setup requirements
- Particularly suitable for module ranges < 1.5
- The full profile roller dresser is basically used as an individual tool on a powered dressing spindle
- For single-pass and multi-pass dressing
- The design of each tool is specific to that of the workpiece
- Tooth root grinding is normally used
- Tools cannot be regenerated by regrinding or replating the body

WINTER

Profile

Gear

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

> Service Glossary

Honing processes, continuous gear grinding and profile grinding

Tooth flank honing

Honing hardened gear teeth is a powerful fine machining process with low cutting speeds.

The cross-axis angle between the gear and the honing ring causes relative motion at an angle from the tooth tip and root towards the pitch circle. Because of the curved machining marks and surface structure produced, noise production in use is reduced.

There is no possibility of thermal degradation of the tooth flanks because of the low cutting speeds, which also induce a residual compressive surface stress.

In tooth flank honing there is a distinction between structural honing and power honing:

Structural honing, with low material removal, follows gear grinding and generally only changes the surface structure.

Power honing does away with the need for preliminary grinding because of its high metal removal rate.

Source: Gleason-Hurth

Continuous profile grinding

In continuous profile grinding on Reishauer RZF and RZP gear grinding machines the profile of the globoid grinding worm is created with a diamond dressing wheel. Line contact in this process enables a high rate of material removal.

Continuous hob grinding

In continuous hob grinding the shape of the involute is generated by rolling the rack-shaped profile of the cylindrical grinding worm over the workpiece. The profile of the grinding worm can be generated with a variety of dressing tools. The gear is used to make a rack-like profile for the dressing tools. The profile is created in the grinding worm by diamond dressing wheels, single-taper and twin-taper dressing wheels and single-pass dressing sets.

Machining bevel gears

With the WINTER and NORTON brands, Saint-Gobain has an optimally matched product range for grinding spiral and hypoid bevel gears.

For grinding bevel gears, Klingelnberg and Gleason-Pfauter machines are typically used

With grinding cups and the corresponding rotary dressing tools, Saint-Gobain offers a comprehensive grinding process solution:

- Vitrified bonded WINTER cBN grinding cup wheels
- NORTON grinding cup wheels made from special fused alumina or sintered corundum
- Rotary WINTER dressing tools matched to the grinding cups

Source: Klingelnberg

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dresser

Stationary Dressers

Ancillary Dressers

Dressing Parameter

Complete solutions

External cylindrical grinding, bore grinding and top-and-bottom grinding operations

The best solutions for these applications are

- NORTON conventional grinding tools and wheels
- WINTER electroplated or vitrified bonded diamond/cBN grinding wheels
- WINTER diamond dressing tools.

Gear grinding

Gear grinding tasks are best done with

- · NORTON conventional grinding wheels, grinding worms and grinding cup wheels
- WINTER electroplated or vitrified bonded diamond/cBN grinding wheels and cup wheels
- WINTER diamond dressing tools.

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Profile Dressers

Gear Dressers

CNC

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Checklist

for the manufacture of a new dressing tool for grinding worms

Customer / customer no.:						
Machine / dresser:						
Design data:	Workpiece drawing/diagrams with tole by post or email (.dxf, .dwg, .pdf or .tif f	_				
	Diagram of flank lines and profile modifications with all data and tolerances for					
	traction flank and thrust flank					
	Traction flank and thrust flank assignment on the tool specified where produced modification differs on each flank					
	Profile crowning	C _b =				
	Profile angle deviation	fH _a =				
	Tip relief	C _a =				
	Tip relief start diameter	d _{ca} =				
	Crowning	C _b =				
	Tooth trace angle deviation	fH _B =				
	☐ Tooth root is ground					
	Tool tip radius	roh _{fp} =				
	and/or	тр				
	Fillet radius	r _f =				
	☐ Tool tip height	h _{ap} =				
	Drawing requested for approval					
Gear data:	Normal module	m -				
Gedi dala:	Number of teeth	m _n = z =				
	Pressure angle	α _n =				
	Helix angle and direction	β =				
	Tip diameter	d _a =				
	Root diameter	d _f =				
	Usable tip circle diameter	d _{Na} =				
	Usable root circle diameter	d _{Nf} =				
	Surface quality required	$R_{o}/R_{z} = $				
	Diametric two-ball/two-roller measurement					
	Measuring ball Ø and/or measuring roller Ø	D _M =				
	Base tangent length	W _k =				
	Number of measuring teeth	k =				
	or					
	Normal tooth thickness	S _n =				
Correction undertaken	Pressure angle	α =				
on the machine:	Module	α _n =				
Grinding worm:	Dimensions Right-hand	The state of the s				
	Number of threads Left-hand	THE DOMESTICAL				
	Specification used at the time					

SAINT-GOBAIN Diamantwerkzeuge GmbH & Co. KG, Schützenwall 13–17, 22844 Norderstedt, Germany, tel.: +49 (0)40 5258-0, fax +49 (0) 40 5258-215 - www.winter-superabrasives.com

Checklist

for the manufacture of a new dressing tool for honing rings

Customer / customer no.:		
Machine / dresser:		
Honing process:	Structural/surface honing (approx. 10 µm removal/flank) Preprocessing: hard shaving/g	
Loading:	Automatic	Manual loading
Design data:	Workpiece drawing/diagrams by post or email (.dxf, .dwg, .p	with tolerances and flank assignment shown – odf or .tif format)
		ofile modifications with all data and and thrust flank (also showing the traction flank n the tool)
	Profile crowning	Ch =
	Profile angle deviation	$fH_{\alpha} = \underline{\hspace{1cm}}$
	Tip relief	C _a =
	Tip relief start diameter	d _{ca} =
	Crowning	C _b =
	Tooth trace angle deviation	$fH_{\beta} = \underline{\hspace{1cm}}$
	Workpiece position definition	
	(machine/measurement/flank assignment)	
	Drawing requested for approve	ral
Gear data:	Normal module	m _n =
	Number of teeth	z =
	Pressure angle	α _p =
	Helix angle and direction	ß =
	Tip diameter	d _a =
	Root diameter	d _f =
	Usable tip circle diameter	d _{Ng} =
	Usable root circle diameter	d _{Nf} =
	Surface quality required	$R_{0}^{\prime\prime}/R_{z} = $
	Diametric two-ball/two-roller measu	rementM _{dk} /M _{dr} =
	Measuring ball Ø and/or measuring	roller ØD _M =
	or	
	Base tangent length	W _k =
	Number of measuring teeth	k =
	Normal tooth thickness	S _n =
Honing ring:	Coating/grit size	
Honing ring: (only in addition for repeat orders)	D91 D126	D151 D181
	Cutting material Dimensions	

SAINT-GOBAIN Diamantwerkzeuge GmbH & Co. KG, Schützenwall 13–17, 22844 Norderstedt, Germany tel.: +49 (0)40 5258-0, fax +49 (0) 40 5258-215 - www.winter-superabrasives.com

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers


Stationary Dressers

> Ancillary Dressers

Dressina

Parameters

CNC Dressing Discs

Contour controlled dressing tools enable complex grinding wheel profiles to be dressed as well as simple cylindrical grinding wheels of differing widths. In addition it is possible, by specifying the dressing tool and selecting the individual dressing parameters, to influence the dressing result and thereby the quality of the workpiece.

The advantages of contour controlled dressing discs are

- A versatile dressing tool
- Design is not specific to individual workpieces
- Constant effective dressing width
- Automation of the dressing process
- Reproducable high precision with low workpiece rejects

Information

Further information on applications and products can be found at www.winter-superabrasives.com

- 40 Manufacturing process
- 40 Types of rotary CNC dressing discs
- 41 Which one to choose?
- 42 SG dressing discs
- 42 General
- 43 Range of SG dressing discs in stock
- 46 TS dressing discs
- 46 General
- 47 TS dressing discs held in stock
- 48 PCD/CVD/MCD dressing discs
- 48 General
- 49 Designs with CVD held in stock
- 50 SD dressing discs
- 51 UZ dressing discs
- 52 DDS dressing discs
- 52 General
- 53 DDS dressing discs held in stock
- 53 Profile examples
- 54 Advantages of CNC dressing of diamond grinding wheels with DDS dressing discs
- 54 Sample applications
- 57 Checklist for dressing discs

Manufacturing process

Types of rotary CNC dressing discs

	Туре	Manufacture	Bond	Grit distribution	Grit density
	SG	Positive process	Electroplated	Statistical	Maximum
	TS	Reverse process	Infiltrated	Controlled or statistical	Controlled or maximum
N. S.	PCD/CVD/ MCD	Reverse process	Infiltrated	Controlled	Controlled
	SD	Positive process	Sintered	Statistical	Controlled
K	UZ	Reverse process	Electroplated	Statistical	Maximum
SOLUTION OF THE PARTY OF THE PA	DDS	Positive process	Sintered	Controlled	Controlled

WINTER Facts

Profile

Gear Dressers

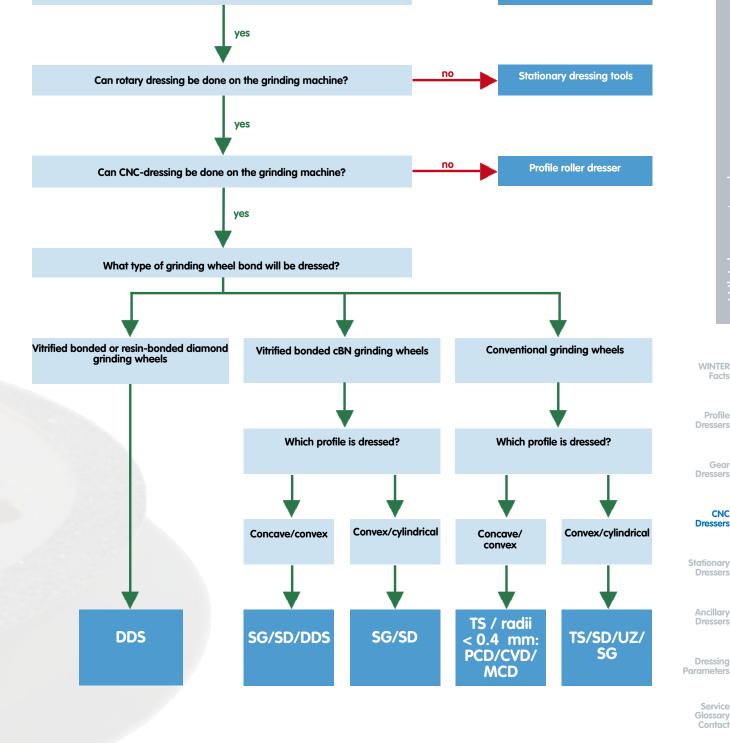
CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary


External profiling?

Which one to choose?

Is dressing on the grinding machine possible?

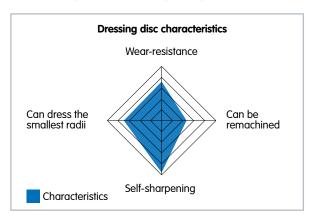
This diagram is intended to assist technical users in the selection of the correct dressing tool. The selection does not depend just on the machine settings and grinding wheel specification, but also on the geometry to be dressed and the surface finish to be achieved on the workpiece. This aid is no more than a rough guideline and recommendation. A selection for a particular application may be arrived at by discussing it with our product managers and sales personnel.

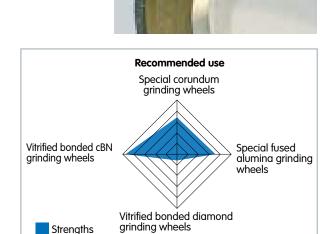
no

CNC

WINTER

Profile

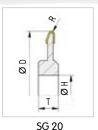

SG dressing discs

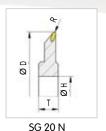

General

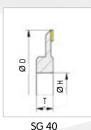
Positive electroplated SG dressing discs have been established in the market for many years. They are characterized by a single layer of diamonds arranged radially and therefore have a constant effective dressing width $\mathbf{b}_{\rm d}$. Versions are available in either steel or bronze bodies.

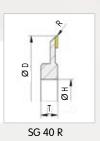
Applications:

- → Dressing vitrified bonded cBN grinding wheels
- → Dressing all conventional grinding wheels


Advantages:


- Statistical diamond distribution gives maximum diamond concentration
- Exceptional running truth accuracy achieved through the finish of the diamond coating
- Constant diamond layer widths due to single-layer of diamond particles
- Minimum radius R = 0.10 mm depending on diamond grit
- Wide variety of versions can be supplied for all dressing applications and machines
- Standard dressing discs can be supplied from stock
- Max. outer diameter 340 mm, H3 bore


Some of our designs:


SG 10

SG 10 N

Ancillary Dressers

Stationary

SG 50

SG 70

\$G 80

SG 90

Parameters

WINTER Facts

Profile **Dressers**

Gear

CNC

Stationary Dressers

Ancillary Dressers

Parameters

Service Glossary Contact

Range of SG dressing discs in stock

SG 40	Design code	D	x	w	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment	
355	302SG71P	100	0.6	5	20	25	H6	D602	Bronze	00310337534	Semi-manu- factured part	
	310SG71P	120	0.6	5	20	25	H6	D602	Bronze	00310337535	Semi-manu- factured part	
5 TA:	305SG71P	150	0.6	5	20	25	H6	D602	Bronze	00310337536	Semi-manu- factured part	
Machine: Universal application —> after suitable adaptation of the body can be used on all machin (e.g. bores 40, 52, 56 mm etc.) Application: Delivery: Dressing of conventional and vitrified bonded cBN grinding wheels Ex stock, 2 weeks for adapting the bore, body width and fastening holes if necessary												
SG 40	Design code	D	x	w	т	н	Bore tol- erance	Grit size	Body	Order number	Comment	
X 55.2	5SG71P	110	0.4	5	10.5	75	НЗ	D426	Steel	66260136400		
	Machine: Application: Delivery:	Dre	g. Junke essing c stock		entional	and vitr	ified bonde	d cBN grii	nding whee	els		
SG 40	Design code	D	x	w	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment	
Tie-	2SG71P	110	0.4	5	10	75	НЗ	D426	Bronze	66260372485		
(1)	Machine: Application:		Junke		entional	and vitr	ified bonde	d cBN grii	nding whee	els		

Delivery:

Ex stock

			396	
	4	10	4	
	30	18	1	
		-14		
100	2013	100		

SG 40

SG 40

Design code Bore tol-Grit Order **Body** Comment erance SG71P 110 8.0 10.85 75 Н3 D852 Bronze 66260129200

Machine: Application: Delivery:

e.g. Junker Dressing of conventional and vitrified bonded cBN grinding wheels Ex stock

*	4	d	
	J	,	
0	24	-	
	0		I

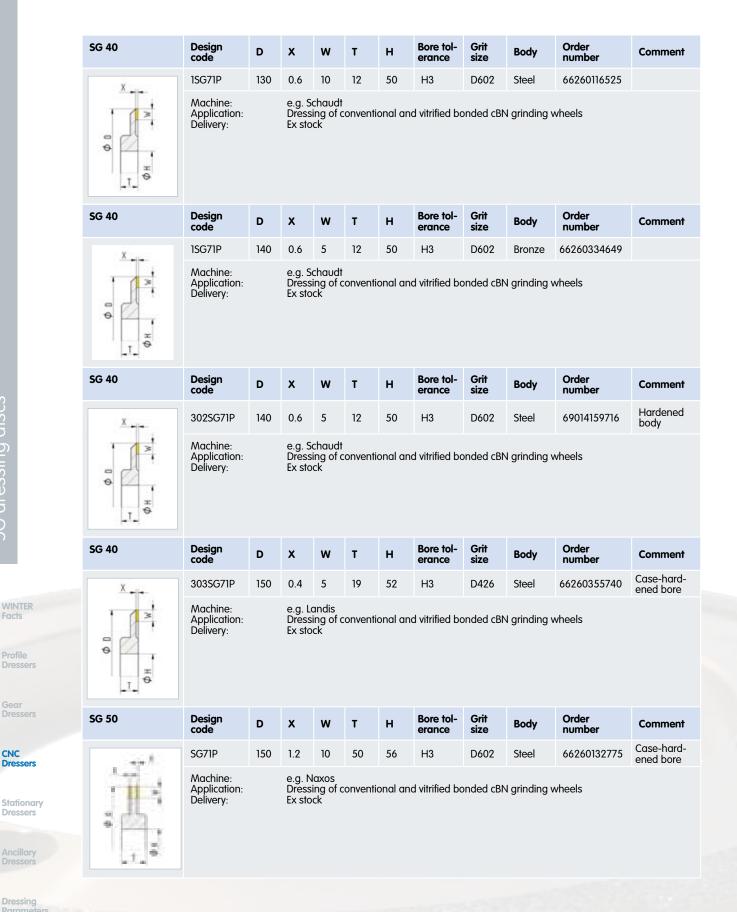
Design code	D	X	w	Т	Н	Bore tol- erance	Grit size	Body	Order number	Comment
306SG71P	120	0.4	5	19	52	Н3	D426	Steel	66260347760	Case-hard- ened bore

Machine: Application: Delivery:

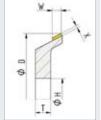
e.g. Landis Dressing of conventional and vitrified bonded cBN grinding wheels Ex stock

All dimensions in mm

WINTER


Profile

CNC


Dressers

Ancillary

Dressing

SG 60	Design code	D	x	w	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment
W	SG71P	110.8	8.0	8	10	75	Н3	D852	Steel	66260127188	

Machine: Application: Delivery:

e.g. Junker Dressing of conventional and vitrified bonded cBN grinding wheels Ex stock

SG 99	Design code	D	U	w	т	н	Bore tol- erance	Grit size	Body	Order number	Comment
	SG71P	173	3	3	16	50	НЗ	D602	Steel	66260131884	R = 0.3 / ∢3°*

Machine: Applications: Delivery: e.g. Schaudt Dressing conventional grinding wheels Ex stock

* This refers to the conicity of the outer diameter

All dimensions in mm

Profile Dressers

WINTER Facts

Gear Dressers

CNC

Stationary Dressers

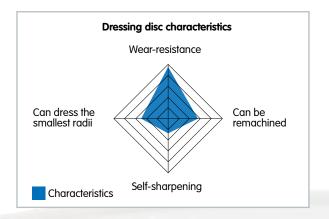
Ancillary Dressers

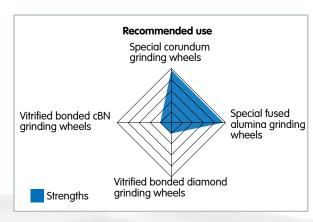
Dressing Parameters

Profile

TS dressing discs

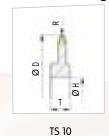
General

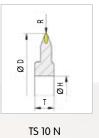

Infiltrated dressing discs are characterized by high wear resistance and consist of a single-layer diamond coating.

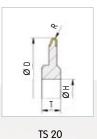

Edge reinforcements can be used to increase the wear resistance.

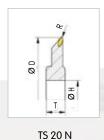
Applications:

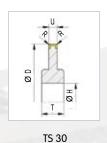
Dressing all conventional grinding wheels

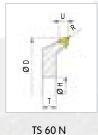





Advantages:


- Both random and controlled diamond concentration
- Extremely high accuracy as the diamond coating is ground
- Individually selected diamonds reinforce small radii
- Radii of less than R = 0.4 mm have needle diamonds
- Minimum radius R = 0.1 mm for an internal angle of 30°
- Minimum coating thickness B = 2 mm with minimum edge radius R = 0.2 mm
- Max. outer diameter 340 mm, H3 bore


Some of our designs:



Dressing

Stationary Dressers

Contact

WINTER

Facts

Profile **Dressers**

Gear

CNC

TS dressing discs held in stock

TS 20	Design code	D	U	x	T	н	Bore tol- erance	Grit size	Body	Order number	Comment
ala:	TS71P	140	3.4	2.6	20	60	H3	D602	Steel	66260387514	R = 0.3
Contract of the Contract of th											

Applications: Delivery:

Dressing conventional grinding wheels

TS 30	Design code	D	U	x	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment
-1-	TS71Z	65	8	8.0	8	43	H3	D852	Steel	66260382820	Cylindrical statistical

Machine: Applications: Delivery:

e.g. Giustina Dressing conventional grinding wheels Ex stock

TS 30	Design code	D	U	x	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment
1 11	2TS71P	85	10	0.8	13	15	НЗ	D1001	Steel	66260381629	Cylindrical statistical chamfer 1x20°
5 80	Machine:		Llni	iversal							

Machine: Applications: Delivery:

Universal Dressing conventional grinding wheels

TS 60 N	Design code	D	U	x	т	н	Bore tol- erance	Grit size	Body	Order number	Comment
33453	UTS71P	50	3	3	13	20	H3	Needles	Steel	66260388125	R = 0.4

Machine: Applications: Delivery:

e.g. Buderus Dressing conventional grinding wheels

Ex stock

TS 60 N	Design code	D	U	x	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment
27462	TS71P	100	3	3	11	40	H3	Needles	Steel	69014181275	R = 0.5

Machine: Applications: Delivery: e.g. Klingelnberg Dressing conventional grinding wheels Ex stock

Ancillary Dressers

Parameters

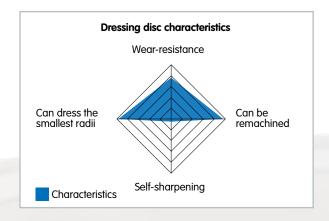
Stationary Dressers

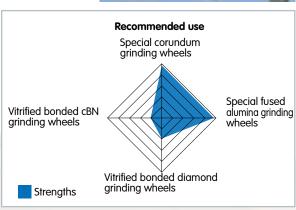
Service Glossary Contact

All dimensions in mm

PCD/CVD/MCD dressing discs

General


Infiltrated versions of CNC dressing discs, with PCD, CVD or MCD rods are particularly suitable for dressing very small radii.


The design enables the dressing discs to be reworked a number of times.

Applications:

- → PCD for dressing grinding wheels with special fused alumina
- → CVD or MCD for dressing grinding wheels with sintered corundum (TG/SG/XG etc.)

Advantages:

- Controlled concentration
- Extremely high accuracy as the diamond coating is ground
- Can be reprofiled many times
- Minimum radius with an internal angle:

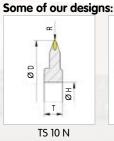
R = 0.05 mm for a minimum angle of 35°

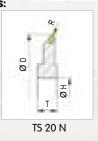
R = 0.10 mm for a minimum angle of 25°

Minimum layer thickness and corner radius for cylindrical version:

B = 0.5 mm

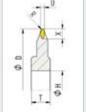
R = 0.05 mm


Max. outer diameter 340 mm, H3 bore


Stationary Dressers

Profile

Ancillary


Dressing

Designs with CVD held in stock

TS 10 N	Design code	D	U	x	Т	н	Bore tol- erance	Grit size	Body	Order number	Comment
- U	YTS71P	100	0.71	1.5	12	40	H3	CVD	Steel	60157698362	R = 0.10 ∢40°

Machine: Applications: Delivery:

e.g. Studer Dressing conventional grinding wheels Ex stock

TS 20 N	Design code	D	U	x	т	н	Bore tol- erance	Grit size	Body	Order number	Comment
7/-4	YTS71P	100	0.67	1.5	12	40	H3	CVD	Steel	60157698367	R = 0.25 ∢40°
* ×	YTS71P	100	1.07	1.5	12	40	Н3	CVD	Steel	60157698368	R = 0.50 ∢40°
•	YTS71P	120	0.67	1.5	12	40	Н3	CVD	Steel	60157698370	R = 0.25 ∢40°
1 9	YTS71P	120	1.07	1.5	12	40	Н3	CVD	Steel	60157698369	R = 0.50 ∢40°
	Machine: Applications: Delivery:		e.g. Studer Dressing conventional grinding wheels Ex stock								

All dimensions in mm

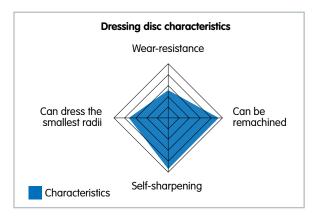
Dressing Parameters

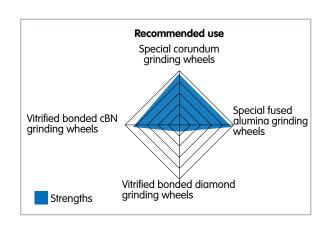
Service Glossary Contact

WINTER

SD dressing discs

The metal-bonded SD dressing disc consists of a multi-layer coating that can be reground and sharpened many times.

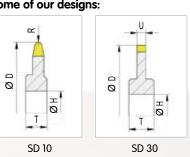

These dressing discs are highly suitable for centreless cylindrical process applications with very fine surface requirements.

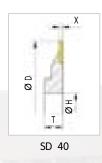

Applications:

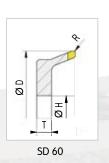
- Dressing vitrified bonded cBN grinding wheels
- Dressing all conventional grinding wheels

Advantages:

- Statistical diamond distribution
- Controlled diamond concentration
- Extremely high accuracy as the diamond layer is ground
- Wide variety of versions for all dressing applications and machines
- Constant effective dressing width b_d depending on the design
- Can be reprofiled and sharpened many times
- Multi-layer coating
 - Minimum layer width 0.8 mm (cylindrical only)
 - Max. outer diameter 150 mm
 - Max. usable coating thickness 10 mm


Some of our designs:


Stationary Dressers Ancillary

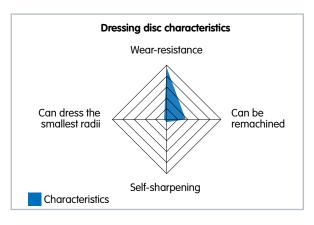

Dressing

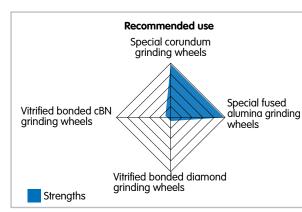
Profile

Contact

17 dressing discs

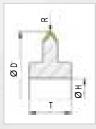
UZ dressing discs

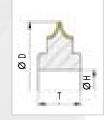

UZ dressing discs are manufactured using the reverse process and have a single-layer diamond coating with high wear resistance.


Edge reinforcements can be used to increase the wear resistance.

Applications:

→ Dressing all conventional grinding wheels





Advantages:

- Highest possible diamond concentration
- Statistical diamond distribution
- High precision manufacturing process gives extremely high accuracy of the diamond layer
- In profile roller dressers, concave radius of 0.03 mm (minimum) and convex radius of 0.1 mm (minimum) can be produced
- Minimum layer width 10 mm
- Current design limits are:
 - Maximum outer diameter 320 mm, H3 bore
 - Minimum radius 3 mm for an internal angle of 180°

Some of our designs:

UZ 10

Sonderausführungen

WINTER

Profile Dressers

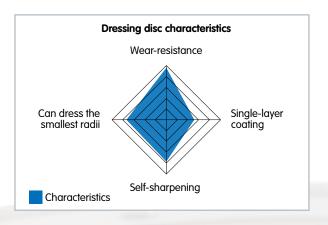
Gear Dressers

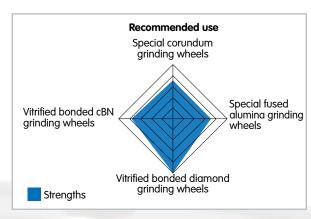
CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

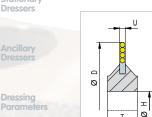

DDS dressing discs


General

The WINTER DDS (Diamond Dressing System) dressing disc enables high-precision CNC dressing of vitrified bonded diamond and cBN grinding wheels. It has a constant profile bearing ratio thanks to patented diamond distribution and concentration and consists of a patterned single layer of sintered diamonds that is clamped into a twopiece body. This type of construction gives it extreme flexibility during the dressing of a variety of different profiles in a single working pass. This requires a grinding machine with a CNC dressing spindle and a contact detection system (e.g. Dittel).

Applications:

Dressing vitrified bonded diamond grinding wheels and cBN grinding wheels directly on the production machine


WINTER

Profile

Stationary

Advantages:

- Controlled concentration of diamonds
- Extremely high accuracy as the diamond layer is ground
- Free standing diamond layer, so dressing of concave and convex profiles is possible
- Constant layer width
- Dressing of vitrified bonded diamond grinding wheels
- Diameters from 90 mm 210 mm
- Layer widths from 0.8 mm 1.2 mm
- Radii depending on layer width 0.4 mm 0.6 mm

DS 10

Contact

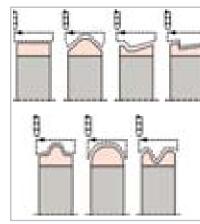
The DDS dressing disc has a patterned single-layer sintered diamond coating that is clamped into a two-part steel body.

DDS dressing discs

DDS dressing discs held in stock

Range of DDS dressing discs in stock

DS 10	Design code	D	U	x	Т	н	Bore toler- ance	Grit size	Body	Order number	Comment
P	300DS71P	120	1	4	15	40	H5	D1181	Steel	69014194133	R = 0.5
T 0	Machine: Application: Delivery:		Dr cB	g. Stude essing o N grind stock	conven	tional g eels	rinding wheels	and vitrified	d bonded	diamond and	


DDS dressing discs - Semi-manufactured parts

DS 10	Design code	D	U	x	Т	н	Bore toler- ance	Grit size	Body	Order number	Comment
\ \alpha \ \ \ \alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3DS71P	150	1	4	15	25		D1181	Steel	60157684272	R = 0.5
×	15DS71P	120	1	4	15	25		D1181	Steel	00310395606	Semi- manu- factured part
T Q	Machine: Application: Delivery: Universal, after suitable adaptation of the body can be used on all machines Dressing conventional grinding wheels and vitrified bonded diamond and cBN grinding wheels Ex stock, 2 weeks for adapting the bore, body width and fastening holes if necessary										essary

Profile examples

With this new dressing system a broad range of different profiles can be created in a single working step

WINTER Facts

Profile Dressers

> Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact

All dimensions in mm

WINTER

Profile

CNC

Stationary Dressers

Ancillary

Advantages of CNC dressing of diamond grinding wheels with DDS dressing discs

- Precision dressing on the production machine
 - Improved profile accuracy
 - Very simple to automate
 - Dressing at grinding speeds
- No need to remove the grinding wheel
 - Reduced down times
 - High-precision axial and radial running truth of the grinding wheel
 - Improved workpiece quality
- Reproducible grinding wheel topography, improved process control

Sample applications

Peel grinding

Machine parameters

Machine: STUDER S32 cylindrical grinding machine

Coolant: Emulsion
Workpiece: Carbide K10

Grinding parameters

Grinding wheel: 1VG 3A1-500-5-4.5

D126 V+ 2046 J1SC C150 E

Cutting speed: $v_c = 75 \text{ m/s}$ Axial feed: $v_{fa} = 40 \text{ mm/min}$ Infeed: $\alpha_e = 0.2 \text{ mm}$

Dressing parameters

Dressing tool: WINTER DDS dressing disc

Dressing cut: $a_{ad} = 4 \times 2 \mu m$

Speed ratio: $q_d = 0.7$ Counter-directional

Overlap ratio: $U_d = 4$

Results

Surface finish: $R_a = 0.17 \mu m$ at $v_{fa} = 5 mm/min$

 $R_a = 0.74 \ \mu m \ at \ v_{fa} = 40 \ mm/min$

Form grinding

Machine parameters

Machine: SCHÜTTE WU 305 tool grinding machine

Coolant: Sintogrind fluid (Oelheld)

Workpiece: Bio-ceramics

Grinding parameters

Grinding wheel: 99VG 700-15 / D64

D64 V+ 2046 J1SC C150

Cutting speed: $v_c = 60 \text{ m/s}$ Transverse infeed: $a_e = 0.2 \text{ mm}$ Allowance: $a_{e \text{ tot}} = 1 \text{ mm}$

Dressing parameters

Dressing tool: WINTER DDS dressing disc

Dressing cut: $a_{ed} = 2 \mu m$ Speed ratio: $q_{d} = 0.3$ Overlap ratio: $U_{d} = 3-9$

Results

Surface finish: $R_{x} \le 3 \mu m$

Dressing Parameter

Service

Contact

WINTER

Centreless grinding

Machine parameters

Machine: SCHAUDT MIKROSA KRONOS S cylindrical grinding machine

Coolant: Emulsion Workpiece: Si₃N₄

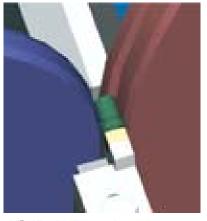
Grinding parameters

Grinding wheel: 1VG 3A1-400-15

D46 V+ 2046 J1SC C100

Cutting speed: $v_c = 120 \text{ m/s}$ Allowance: $a_{e \text{ tot}} = 0.7 \text{ mm}$

Dressing parameters


Dressing tool: WINTER DDS dressing disc

 $\begin{array}{ll} \text{Dressing cut:} & \alpha_{\text{ed}} = 3 \; \mu\text{m} \\ \text{Cutting speed:} & \nu_{\text{cd}} = 40 \; \text{m/s} \\ \text{Speed ratio:} & q_{\text{d}} = 0.4 \end{array}$

Results

Surface roughness: $R_z = 2.02 \mu m$ Diameter tolerance: $D \pm 2 \mu m$

No measurable wear after 400 workpieces.

Drill flute grinding

Machine parameters

Machine: WALTER Helitronic Power Coolant: Sintogrind fluid (Oelheld)

Workpiece: Carbide K10

Grinding parameters

Grinding wheel: 99VG 700-125-10

D76 V+ 3438 J1SC C100

Cutting speed: $v_c = 18-44 \text{ m/s}$

Feed: $v_f = up \text{ to } 200 \text{ mm/min}$

Allowance: $a_0 = 3.5 \text{ mm}$

Material removal rate: $Q'_{wmax} = 8.75 \text{ mm}^3/(\text{mm} \cdot \text{s})$

Dressing parameters

Dressing tool: WINTER DDS dressing disc

 $\begin{array}{lll} \text{Dressing cut:} & \alpha_{\text{ed}} = 3 \; \mu\text{m} \\ \text{Cutting speed:} & \nu_{\text{cd}} = 18 \; \text{m/s} \\ \text{Speed ratio:} & q_{\text{d}} = 0.7 \\ \text{Overlap ratio:} & U_{\text{d}} = 3 \\ \end{array}$

Result

Markedly improved surface roughness and chipping compared with resin-bonded diamond grinding wheels

WINTER

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary

External cylindrical plunge grinding

Machine parameters

Machine: STUDER S32 CNC cylindrical grinding machine

Coolant: Emulsion
Workpiece: Carbide K10

Grinding parameters

Grinding wheel: 99VG 700-400-5

D91 V+ 2046 J1SC C125 E

Cutting speed: $v_c = 40 \text{ m/s}$ Feed: $v_f = 4 \text{ mm/min}$ Allowance: $a_p = 3.5 \text{ mm}$, radial

Dressing parameters

Dressing tool: WINTER DDS dressing disc

 $\begin{array}{ll} \text{Dressing cut:} & \quad \alpha_{\text{ed}} = 3 \; \mu\text{m} \\ \text{Speed ratio:} & \quad q_{\text{d}} = 0.7 \\ \text{Overlap ratio:} & \quad U_{\text{d}} = 7 \\ \end{array}$

Result

Good profile accuracy, very good dimensional accuracy and low roughness

values

Surface profile grinding

Machine parameters

Machine: BLOHM MT 408 surface grinding machine

Coolant: Rotorol (Oelheld)

Workpiece: SiC **Grinding parameters**

Grinding wheel: 99VG 700-400-15

D46 V+ 2046 JISC C100

Cutting speed: $v_c = 45 \text{ m/s}$ Allowance: $a_{e \text{ tot}} = 0.3 \text{ mm}$

Dressing parameters

Dressing tool: WINTER DDS dressing disc

Cutting speed: $v_{cd} = 35 \text{ m/s}$ Dressing cut: $a_{ed} = 2 \mu m$ Speed ratio: $a_{ed} = 0.4$ Overlap ratio: $a_{ed} = 0.4$

Results

Good profile accuracy, very good dimensional accuracy and low roughness

values

Gear Dressers

WINTER

Profile

CNC Dressers

Stationary Dressers

Ancillary

Dressing Parameters

Checklist

for dressing discs

Customer:	
Customer no.:	
Machine:	Machine type: Maximum acceptable dressing disc diameter (mm):
Current dressing	rool:
Dressing unit:	Arbor diameter (mm): Arbor length (mm):
Workpiece:	Workpiece drawing: Surface finish desired: Grinding allowance (mm / Ø):
Grinding wheel:	Specification: Dimensions:
Parameters:	Profile or straight dressing: Grinding wheel circumferential speed (m/s) or speed (rpm): Circumferential speed of dressing disc (m/s) or speed (rpm): Counter-directional (GGL) / uni-directional dressing (GL): Radial infeed per dressing pass (a _{ed}):
	Axial dressing feed (f _{ad}):

Checklis

WINTER Facts

Stationary dressing tools

Dressing grinding wheels is an essential step without which high quality results cannot be achieved. There are as many different dressing tools as there are grinding tasks. Stationary dressing tools with single-grit and cluster diamonds, Fliesen® dressers with natural or synthetic diamond needles, or grits are suitable for every grinding application.

Information

Further information on applications and products can be found at www.winter-superabrasives.com

60 Information on choosing your tool

62 Diamond Fliesen® tools

- 62 Ti-Tan & Furioso: The new generation of particularly wear-resistant diamond Fliesen® tools
- 64 D25 MCD needle blade dressers
- 66 D30 CVD needle blade
- 67 D35 CVD needle blade
- 68 Needle blade with natural diamond
- 70 Standard blade with diamond grit
- 73 Toolholders and shanks for diamond Fliesen® tools

74 Single point dressers

- 74 D12 single point dressers with MCD needles
- 75 D30 single point dressers with CVD needles
- 76 D53 single point diamond dressers with PCD plates
- 77 Profile diamond, ground
- 30 Single-point dressers with natural diamonds
- 82 Rondist rotatable tools with diamond or CVD
- 83 PCD and CVD insert dressers

85 Toolholders and shanks for com mon machine types

88 Multi-point dressers

- 88 D21 multi-point dressers with natural diamond
- 89 Igel® multi-point dressers
- 91 pro-dress® multi-point dressers

93 Technical notes

- Dressing side feed and positions in relation to the grinding wheel for stationary dressing tools
- 96 Checklist for stationary dressing tools

Information on choosing your tool

Ар	plication		Centreles	s / throu	gh-feed grin	ding		Angular p profile gri	lunge / nding	Straight plunge grinding		
Dre Rec	essing to	ol	All standard alumina (Al ₂ O ₃)	Silicon carbide (SiC)	Quantum, SG, TG, XG, ES, Vortex, sintered alumina	Altos, Altos IPX, extruded alumina	Regulat- ing wheel, rubber or vitrified bond	All standard aluminas (Al ₂ O ₃)	Quantum, SG, TG, XG, ES, sintered aluminas	Silicon carbide (SiC)	All standard aluminas (Al ₂ O ₃)	Quantum, SG, TG, XG, ES, sintered aluminas
	page 62	Ti-Tan™			0	•			0		0	0
	page 62	Furioso™			•	0			0		0	•
en®	page 64	D25 – MCD needle blade dressers		0	0	0				•		
Diamand Fliesen®	page 66	D30 – CVD needle blade dressers	•		0						•	0
Dian	page 67	D35 – CVD needle blade dressers						•	•		0	0
	page 68	Needle blade with natural diamond						0	0	0		
	page 70	Standard blade with diamond grit	0	•	0	0					0	0
	page 74	D12 – single point dresser with MCD needle										
	page 75	D30 – single point dresser with CVD needle										
essers	page 76	D53 – single point dresser with PCD plate					•					
Singele point dra	page 77	Profile diamond / ground Diaform chisel										
Singel	page 80	Single point dresser with natural diamond					0					
	page 82	Rondist rotatable tools with diamond or CVD										
	page 83	PCD and CVD insert dressers	0		0	0						
dressers	page 88	D21 – multi-point dressers with natural diamonds in 2 or 3 rows	0	0								
Multipoint dressers	page 89-92	Igel® and pro- dress multi-point dressers										

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary

Dressers

Dressing Parameters

	Internal gi wheels ≥ 5	rinding / grii 500 mm	nding	Internal gr wheels < 5	rinding / grir 500 mm	nding	Flat / cree	p feed grind	ling	Profile grinding DIA- FORM equip- ment	Grinding with very or very fin straight di	vheels coarse e grit, ressing
Silicon carbide (SiC)	All standard aluminas (Al ₂ O ₃)	Quantum, SG, TG, XG, ES, sintered aluminas	Silicon carbide (SiC)	All standard aluminas (Al ₂ O ₃)	Quantum, SG, TG, XG, ES, sintered aluminas	Silicon carbide (SiC)	Vortex, all standard aluminas (Al ₂ O ₃)	Altos, Altos IPX, sintered aluminas	Silicon carbide (SiC)	All conventional grinding wheels	All standard aluminas (Al ₂ O ₃), sintered aluminas	Silicon carbide (SiC)
		0					0	•				
		0					•	0				
0		0	•				0	0	•			
	•	•					0	0		0		
•	0	0	0				0	0	0		0	0
				0	0	•						
				•	•							
										•		
				0	0	0						
				0	0	0	0	0				
				0	0		0	0				
											•	•

First choice Second choice WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

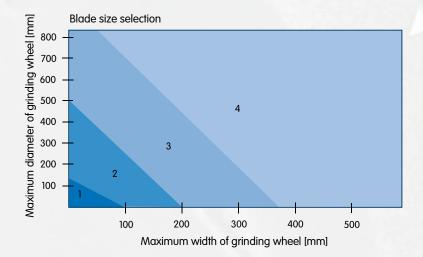
Dressing Parameters

Diamond Fliesen® tools

Diamond Fliesen® tools tools are universal tools for profile dressing and straight dressing operations. Whether they have natural or synthetic diamonds, or whether they are produced as a needle blade or grit blade tool, their consistent performance over the whole of their working life is simply amazing.

Information on toolholders for diamond Fliesen® tools tools is given in the section on "Toolholders and shanks for diamond Fliesen® tools". A separate section of this chapter deals with shank versions for popular machine toolholders (e.g. MK1).

Ti-Tan & Furioso: The new generation of particularly wear-resistant diamond Fliesen® tools


Ti-Tan has been developed for Altos, Altos IPX, sintered and extruded aluminas etc. Furioso has been developed for Quantum, SG, TG, XG, ES and special aluminas.

Selecting the right blade tool

We have made it easy for you to select the most suitable blade dresser:

- Simply choose the appropriate blade size from the diagram according to the width and diameter of your grinding wheel.
- Then choose the best blade tool from the table below.

WINTER

Profile Dressers

Diesseis

Stationary Dressers

Ancillary Dressers

Dressing Parameter

Service Glossary Contact

	Blade size	Grinding wheel grit size	For Altos, Altos I extruded alumin		For Quantum, Vortex, SG, TG, XG, ES, sintered aluminas		
	Size	[mesh]	Specification	Order number	Specification	Order number	
		120-180	FRS 75 Ti-Tan	69014122959	FRS 75 Furioso	69014122937	
	,	80-120	FRS 90 Ti-Tan	69014122960	FRS 90 Furioso	69014122939	
9 :	1	54-80	FRS 115 Ti-Tan	69014122965	FRS 115 Furioso	69014122940	
		36-54	FRS 140 Ti-Tan	69014122970	FRS 140 Furioso	69014122941	

All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 6 item, delivery: 6 weeks

	Blade size	Grinding wheel grit size	For Altos, Altos I extruded alumin		For Quantum, Vortex, SG, TG, XG, ES, sintered aluminas		
	size	size [mesh]	Specification	Order number	Specification	Order number	
		120-180	FBS 75 Ti-Tan	69014122972	FBS 75 Furioso	69014122944	
	2	80-120	FBS 90 Ti-Tan	69014122974 1)	FBS 90 Furioso	69014122946 1)	
1 77 4	2	54-80	FBS 115 Ti-Tan	69014122975 1)	FBS 115 Furioso	69014122947 1)	
	3	36-54	FBS 140 Ti-Tan	69014122979	FBS 140 Furioso	69014122948	
68		120-180	FAS 75 Ti-Tan	69014122981	FAS 75 Furioso	69014122950	
N22 B		80-120	FAS 90 Ti-Tan	69014122983 1)	FAS 90 Furioso	60157693885 1)	
	3	54-80	FAS 115 Ti-Tan	69014122987 1)	FAS 115 Furioso	60157690579 1)	
		36-54	FAS 140 Ti-Tan	69014122989	FAS 140 Furioso	69014122952	
1 11 11 8 4		120-180	1TFAS 75 Ti-Tan	69014122991	1TFAS 75 Furioso	69014122953	
	4	80-120	1TFAS 90 Ti-Tan	69014122993	1TFAS 90 Furioso	69014122954	
		54-80	1TFAS 115 Ti-Tan	69014122994	1TFAS 115 Furioso	69014122955	
原料		36-54	1TFAS 140 Ti-Tan	69014122995	1TFAS 140 Furioso	69014122956	

Explanation of the specification

Des	ignation	Width	Effective length	Total length
1	FRS	5	12	28
2	FBS	10	15	33
3	FAS	20	15	33
	Twin blad	e with cooling channel		
4	1TFAS	20	15	35

Designation	FEPA	
75	D501	
90	D711	
115	D1001	
140	D1181	

Stationary Dressers

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Ancillary Dressers

Dressing Parameters

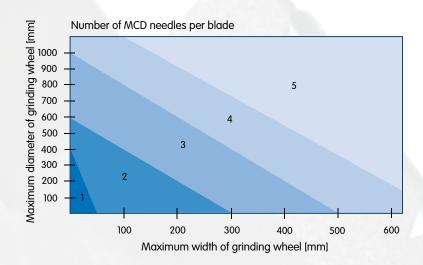
> Service Glossary Contact

All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 6 pieces/for twin blade: 3 pieces, delivery: 6 weeks

D25 MCD needle blade dressers


Preferably for profiling, but also for the straight dressing of hard grinding wheels, sintered alumina and silicon carbide grinding wheels. For straight plunge dressing we recommend the version with the hard material in the centre; for angular plunge dressing the off centred (OC) arrangement is suitable.

Selecting the right blade tool

We have made it easy for you to select the most suitable blade dresser:

- Simply choose the appropriate blade size from the diagram according to the width and diameter of your grinding wheel.
- Then choose the best blade tool from the table below.

D25 standard range (centred version)

	Number of needles	Grit size Grinding wheel [Mesh]	Designation	Effective cutting width T	Width at tip B	Order number
	1	80-120 60 46	2565 / 1 2585 / 1 25115 / 1	0.8 1.1 1.5	4.0 4.0 4.0	66260348671 66260348174 66260346380
	2	80-120 60 46	2565 / 2 2585 / 2 25115 / 2	0.8 1.1 1.5	6.0 6.0 6.0	66260139870 ¹⁾ 66260134397 ¹⁾ 66260339334
	3	80-120 60 46	2565 / 3 2585 / 3 25115 / 3	0.8 1.1 1.5	8.0 8.0 8.0	66260138695 ¹⁾ 66260139398 ¹⁾ 66260139601
→ ₩ . \!	4	80-120 60 46	2565 / 4 2585 / 4 25115 / 4	0.8 1.1 1.5	10.0 10.0 10.0	66260137996 ¹⁾ 66260392047 ¹⁾ 66260138202 ¹⁾
	5	80-120 60 46	2565 / 5 2585 / 5 25115 / 5	0.8 1.1 1.5	10.0 10.0 10.0	66260378376 66260372054 69014128154

WINTER Facts

Profile Dresser

Gear

CNC Dresser

Stationary Dressers

Ancillary

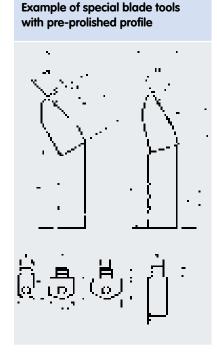
Dressing Parameter

Service Glossary Contact

All dimensions in mm

1) Available ex stock

D25 standard range (off-centred version, OC)


Number of nee- dles	Grit size Grinding wheel [mesh]	Designation	Effective cutting width T	Width at tip B	Order number
1	80-120 60 46	2565 - OC / 1 2585 - OC / 1 25115 - OC / 1	0.8 1.1 1.5	4.0 4.0 4.0	66260349073 66260345676 66260344382
2	80-120 60 46	2565 - OC / 2 2585 - OC / 2 25115 - OC / 2	0.8 1.1 1.5	6.0 6.0 6.0	66260344134 ¹⁾ 66260138314 ¹⁾ 66260139317
3	80-120 60 46	2565 - OC / 3 2585 - OC / 3 25115 - OC / 3	0.8 1.1 1.5	8.0 8.0 8.0	66260135912 ¹⁾ 66260342479 66260137318
4	80-120 60 46	2565 - OC / 4 2585 - OC / 4 25115 - OC / 4	0.8 1.1 1.5	10.0 10.0 10.0	66260392033 ¹⁾ 66260137616 ¹⁾ 66260137319 ¹⁾
5	80-120 60 46	2565 - OC / 5 2585 - OC / 5 25115 - OC / 5	0.8 1.1 1.5	10.0 10.0 10.0	69014128155 69014128156 69014128157

D25 radius and angle pregrinding

D25, D30 and D35 diamond Fliesen® tools are available with the diamond radius and angle preground.

The advantages of pre-polishing are

- Reduction of the work needed to change the tool as it takes less time to match the dresser to the profile of the grinding wheel,
- Adherence to profile directly after tooling change, even for high precision profiles with a radius of only 0.125 mm.

Information on toolholders for diamond Fliesen® tools is given in the section on 'Toolholders and shanks for diamond tools'. A separate section of this chapter deals with shank versions for popular machine toolholders (e.g. MK1).

Stationary Dressers

WINTER Facts

Profile Dressers

Gear

CNC

Ancillary Dressers

Dressing Parameters

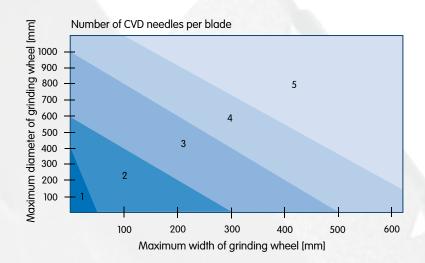
> Glossary Contact

All dimensions in mm

¹⁾ Available ex stock

D30 CVD needle blade

Because the CVD diamond material is centred, this blade is the first choice for high precision straight dressing of alumina, special fused alumina and sintered alumina grinding wheels.


A highly durable tool with straight CVD needle inserts.

Selecting the right blade tool

We have made it easy for you to select the most suitable blade dresser:

- Simply choose the appropriate blade size from the diagram according to the width and diameter of your grinding wheel.
- Then choose the best blade tool from the table below.

D30 standard range

	Number of needles	Grit size Grinding wheel [Mesh]	Designation	Effective cutting width T	Width at tip B	Order number
	1	150-240 80-120 60 46	3044 / 1 3064 / 1 3084 / 1 30124 / 1	0.4 0.6 0.8 1.2	3.0 3.0 3.0 4.0	66260350081 66260350933 69014128213 69014128215
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	150-240 80-120 60 46	3044 / 2 3064 / 2 3084 / 2 30124 / 2	0.4 0.6 0.8 1.2	4.0 4.0 5.0 6.0	66260137455 ¹¹ 66260139158 ¹¹ 66260136762 ¹¹ 66260196365 ¹¹
T 1	3	150-240 80-120 60 46	3044 / 3 3064 / 3 3084 / 3 30124 / 3	0.4 0.6 0.8 1.2	5.0 6.0 7.0 8.0	66260139756 ¹¹ 66260391992 ¹¹ 66260139163 ¹¹ 66260139466
	4	150-240 80-120 60 46	3044 / 4 3064 / 4 3084 / 4 30124 / 4	0.4 0.6 0.8 1.2	6.0 8.0 9.0 10.0	66260195857 ¹⁾ 66260138561 ¹⁾ 66260139464 ¹⁾ 66260137467 ¹⁾
	5	150-240 80-120 60 46	3044 / 5 3064 / 5 3084 / 5 30124 / 5	0.4 0.6 0.8 1.2	7.0 10.0 10.0 10.0	69014128217 66260345996 69014128219 69014128221

Information on toolholders for diamond Fliesen® tools tools is given in the section on 'Toolholders and shanks for diamond Fliesen® tools'. A separate section of this chapter deals with shank versions for popular machine toolholders (e.g. MK1).

All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 4 item, delivery: 4 weeks

WINTER

Profile Dressers

Gear Dresser

CNC Dresser

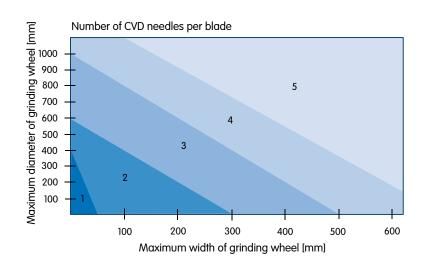
Stationary Dressers

Ancillary

Dressing Parameter

D35 CVD needle blade

This blade with its off-centred CVD material is a first choice for angular plunge dressing of all alumina, special fused alumina and sintered alumina grinding wheels.


A highly durable tool with CVD needles inserted diagonally.

Selecting the right blade tool

We have made it easy for you to select the most suitable blade dresser:

- Simply choose the appropriate blade size from the diagram according to the width and diameter of your grinding wheel.
- Then choose the best blade tool from the table below.

D35 standard range

	Number of needles	Grit size Grinding wheel [Mesh]	Designation	Effective cutting width T	Width at tip B	Order number
	1	150-240 80-120 60 46	3544 - OC / 1 3564 - OC / 1 3584 - OC / 1 35124 - OC / 1	0.6 0.8 1.1 1.5	3.0 3.0 3.0 4.0	66260346491 66260346692 66260345994 66260346395
	2	150-240 80-120 60 46	3544 - OC / 2 3564 - OC / 2 3584 - OC / 2 35124 - OC / 2	0.6 0.8 1.1 1.5	4.0 4.0 5.0 6.0	66260336089 66260337490 66260337491 ¹¹ 66260336994
<u></u>	3	150-240 80-120 60 46	3544 - OC / 3 3564 - OC / 3 3584 - OC / 3 35124 - OC / 3	0.6 0.8 1.1 1.5	5.0 6.0 7.0 8.0	66260336752 66260337624 ¹¹ 66260337292 ¹¹ 66260337195 ¹¹
	4	150-240 80-120 60 46	3544 - OC / 4 3564 - OC / 4 3584 - OC / 4 35124 - OC / 4	0.6 0.8 1.1 1.5	6.0 8.0 9.0 10.0	66260333197 66260195223 ¹¹ 66260336093 ¹¹ 66260336196 ¹¹
	5	150-240 80-120 60 46	3544 - OC / 5 3564 - OC / 5 3584 - OC / 5 35124 - OC / 5	0.6 0.8 1.1 1.5	7.0 10.0 10.0 10.0	69014128150 69014128151 69014128152 69014128153

Information on toolholders for diamond Fliesen® tools is given in the section on 'Toolholders and shanks for diamond Fliesen® tools'. A separate section of this chapter deals with shank versions for popular machine toolholders (e.g. MK1).

All dimensions in mm

Minimum order quantity for articles not in stock: 4 item, delivery: 4 weeks

WINTER Facts

Profile Dressers

> Gear Dressers

CNC Dressers

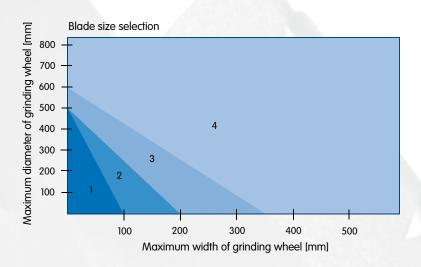
Stationary Dressers

Ancillary Dressers

Dressing Parameters

¹⁾ Available ex stock

Needle blade with natural diamond


Suitable for angular plunge / straight and profile dressing of all alumina, special fused alumina, and sintered alumina grinding wheels in grit sizes 46–80. Exceptional natural diamond needles, set by hand in a special design, guarantee the long service life of these tools.

Selecting the right blade tool

We have made it easy for you to select the most suitable blade dresser:

- Simply choose the appropriate blade size from the diagram according to the width and diameter of your grinding wheel.
- Then choose the best blade tool from the table below.

Standard range of needle blade tools

	Blade size	Specifica- tion	w	x	X,	Bond	Size of needles	Order number
all the call the call Total	1	FD180	10	12	28	T645E	N1000	69014185757 11
1987 AL	2	FB180	10	15	33	T645E	N1100	69014185754 ¹⁾
	3	FC180	20	10	28	T645E	N1100	69014185756 ¹⁾
	4	FA180	20	15	33	T645E	N1100	69014185755 ¹⁾

WINTER Facts

Profile Dresser

Gear Dressers

CNC Dresser

Stationary Dressers

Ancillary Dressers

Dressing Parameter

Service Glossary Contact

All dimensions in mm

1) Available ex stock

Special designs of needle blade tools

Needle blade tools in centered version with highly effective cutting width specifications b_d and consistent wear characteristics.

	Blade size	Specifica- tion	w	x	X,	Bond	Size of needles	Order number
	2	9TFB180	10	15	33	T645J	N800	69014185798 ¹⁾
-3.25 M	2	1TFB180	10	15	33	T645J	N1000	66260388626
	4	8TFA180	20	15	33	T645J	N900	66260387342 1)

Needle blade tools in an off-centred versions with highly effective cutting width specifications b_d and consistent wear characteristics.

	Blade size	Specifica- tion	w	x	X,	Bond	Size of needles	Order number
#설 (주-	2	11TFB180	10	15	33	T645E	N1000	66260100089
	2	13TFB180	10	15	33	T645E	N800	66260113218
	4	14TFA180	20	15	33	T645E	N900	69014159391

Information on toolholders for diamond Fliesen® tools is given in the section on 'Toolholders and shanks for diamond Fliesen® tools'. A separate section of this chapter deals with shank versions for popular machine toolholders (e.g. MK1).

WINTER Facts

Profile Dressers

> Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact

All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 6 item, delivery: 6 weeks

Standard blade with diamond grit

A universal dressing tool for straight and profiled dressing of alumina and sintered alumina grinding wheels with consistent surface finish over the whole of its working life.


For large grinding wheels and sets of grinding wheels we recommend mounting of two blade tools or use of a twin blade such as 1T FAS 115-20-15-35.

Selecting the right blade tool

We have made it easy for you to select the most suitable blade dresser:

- Simply choose the appropriate blade size from the diagram according to the width and diameter of your grinding wheel.
- Then choose the best blade tool from the table below.

Explanation of the specification

Designation		Width	Effective length	Total length					
1	FRS 5		12	28					
2	FBS	10	15	33					
2	FDS	10	12	28					
3	FAS	20	15	33					
3	FCS	20	10	28					
	Twin blade with cooling channel								
4	1TFAS	20	15	35					

Designation	FEPA
75	D501
90	D711
115	D1001
140	D1181

Stationary Dressers

WINTER

Profile

Gear

CNC

Diesseis

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Order sample

Dressing tool	Width of diamond section W	Effective length of diamond section X	Total length of tool X_1	Diamond grit size	Bond
FAS 115 -	20 -	15 -	33	D1001	H770J

All dimensions in mm

1) Available ex stock

Range of standard blade tool with diamond grit

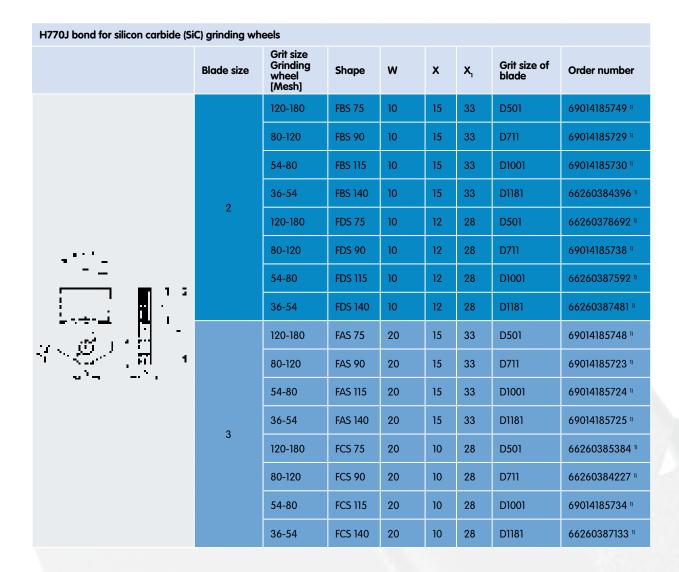
T645E bond for alumina grinding wheels, including sintered aluminas (AL_2O_3)										
	Blade size	Grit size Grinding wheel [Mesh]	Shape	w	x	X,	Grit size of blade	Order number		
11.5 D A.3.3		120-180	FRS 75	5	12	28	D501	66260382020		
	1	80-120	FRS 90	5	12	28	D711	66260114636 ¹¹		
, kp., H.		54-80	FRS 115	5	12	28	D1001	66260388134		
		120-180	FBS 75	10	15	33	D501	66260387135 11		
		80-120	FBS 90	10	15	33	D711	69014185726 11		
		54-80	FBS 115	10	15	33	D1001	69014185727 11		
	0	36-54	FBS 140	10	15	33	D1181	69014185728 ¹¹		
	2	120-180	FDS 75	10	12	28	D501	69014185747 11		
		80-120	FDS 90	10	12	28	D711	69014185735 ¹¹		
		54-80	FDS 115	10	12	28	D1001	69014185736 ¹¹		
		36-54	FDS 140	10	12	28	D1181	69014185737 ¹¹		
		120-180	FAS 75	20	15	33	D501	66260384327 11		
**************************************		80-120	FAS 90	20	15	33	D711	69014185720 ¹¹		
		54-80	FAS 115	20	15	33	D1001	69014185721 11		
		36-54	FAS 140	20	15	33	D1181	69014185722 ¹¹		
	3	120-180	FCS 75	20	10	28	D501	69014185746 ¹¹		
		80-120	FCS 90	20	10	28	D711	69014185732 ¹¹		
		54-80	FCS 115	20	10	28	D1001	69014185718 11		
		36-54	FCS 140	20	10	28	D1181	69014185716 ¹⁾		
		80-120	IT FAS 90	20	15	35	D711	66260389354		
	4	54-80	1T FAS 115	20	15	35	D1001	66260388162 ¹⁾		
		36-54	1T FAS 140	20	15	35	D1181	66260386770		

Please feel free to contact our expert advisors at any time. Contact details can be found on the last page

All dimensions in mm

WINTER Facts

Profile Dressers


CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

¹⁾ Available ex stock

Information on toolholders for diamond Fliesen® tools is given in the section on 'Toolholders and shanks for diamond Fliesen® tools'. A separate section of this chapter deals with shank versions for popular machine toolholders (e.g. MK1).

WINTER Facts

Profile Dressers

Gear

CNC Dresser

Stationary Dressers

Ancillary Dressers

Dressing Parameter

Toolholders and shanks for diamond Fliesen® tools

Two types of shank for diamond Fliesen® tools are available for your machine toolholders:

- rigid brazed blade tool
- flexible swivel holder.

The variable adjustable angle of the flexible swivel holder allows the dresser to be placed in the best possible position with respect to the grinding wheel and simply clamped.

Tool holder	Shank	Order number	Clamping length	
Rigid brazed tool holder	MK0 MK1 Cylindrical			See section entitled 'Toolholders and shanks'
Rigid brazed tool holder	to cus- tomer specifica- tion			
Swivel holder for single blade	MKO	66260386838	25.5	
	MK1	66260196356 ¹⁾	40	
	Cylindrical, diameter 10	66260389757	50	
Swivel holder for dual blade tools	MK1	66260389454	40	
	Cylindrical diameter 12.7	66260390721	50	

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Service Glossary Contact

All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 1 item, delivery: 4 weeks

WINTER

Profile Dressers

CNC

Stationary Dressers

Ancillary

Dressing

Single point dressers

The single point dresser is made of synthetic diamond (CVD or MCD) or a natural diamond, preferably an octahedron. The hard material is gripped in a mount that is suitable for the machine toolholder and direction of use. Diamonds of many different grades and dimensions are used depending on the customer's requests and the application. The main applications for these dressers are small single-profile grinding wheels and internal cylindrical grinding. An exception to this is the profile diamond with a pre-ground radius and angle, which is also used for larger grinding wheels and wheels with complex profiles. Care is required when using these individual dressing tools, as the exposed hard diamond tips are susceptible to vibration and impacts as well as large variations in temperature, which can cause damage to the tool.

D12 single point dressers with MCD needles

This single point dresser consists of a synthetic MCD needle gripped in a holder. The advantage of the synthetic diamond over the natural one is that its precise geometry remains constant over the whole of its working life. This guarantees a uniformly high surface finish that can be reproduced every time without the need to change any set variables such as feed. It is therefore highly suitable for CNC dressing processes and the machining of small grinding wheels, including profiled ones, and internal cylindrical grinding. There is a cutout in the head of the dresser to make it easier to position the needle correctly with respect to the grinding wheel when setting up. The MCD needle is sintered in diagonally with respect to the cutout as this guarantees the longest possible tool life. The cutout must therefore be at right angles to the grinding wheel to obtain the maximum benefit.

Standard range of D12 single point dressers with MCD needles

Туре	Needle dimensio	ns		Shank		Order number
D12	D	Т	L	Туре	Clamping length	
1265	0.6	0.8	4	MK1	40	66260334408
1265	0.6	0.8	4	MK0	25	66260136620
1265	0.6	0.8	4	Cylindrical Ø 10	40	69014164301
1285	0.8	1.1	4	MK1	40	66260340532
1285	0.8	1.1	4	MK0	25	66260369142
1285	0.8	1.1	4	Cylindrical Ø 10	40	66260138887
12115	1.15	1.5	4	MK1	40	66260334220
12115	1.15	1.5	4	MK0	25	69014146751
12115	1.15	1.5	4	Cylindrical Ø 10	40	66260345558

Order sample

Туре	Shank	Clamping length
1285	Cylindrical Ø 10	40

Other shank dimensions available on request.

Service

All dimensions in mm

¹⁾ Available ex stock

D30 single point dressers with CVD needles

This single point dresser consists of a synthetic CVD needle gripped in a holder. The advantage of the synthetic diamond over the natural one is that its precise geometry is retained over the whole of its working life. This guarantees a uniformly high surface finish that can be reproduced every time without the need to change any process variables such as feed. It is therefore highly suitable for CNC dressing processes and the machining of small grinding wheels, including profiled ones, and internal cylindrical grinding. There is a cutout in the head of the dresser to make it easier to position the needle correctly with respect to the grinding wheel when setting up. Since this is a CVD needle, its orientation to the grinding wheel has no significant effect on the tool life of the dresser. Nevertheless it should be noted that the diagonal mounting leads to a greater overlap (T dimension). The CVD is sintered into the shank horizontally with respect to the cutout and in this position the T dimension is the smallest.

Standard range of D30 single point dressers with CVD needles

Туре	Needle dimension	ns		Shank		Order number
D30	D	Т	L	Туре	Clamping length	
3023	0.2	0.2	3	MK1	40	66260364163
3023	0.2	0.2	3	MK0	25	66260338571
3023	0.2	0.2	3	Cylindrical Ø 10	40	66260336272
3033	0.3	0.3	3	MK1	40	66260339183
3033	0.3	0.3	3	MK0	25	66260356104
3033	0.3	0.3	3	Cylindrical Ø 10	40	66260336101
3044	0.4	0.4	4	MK1	40	69014146755
3044	0.4	0.4	4	MK0	25	66260138967
3044	0.4	0.4	4	Cylindrical Ø 10	40	66260338797
3064	0.6	0.6	4	MK1	40	66260335519
3064	0.6	0.6	4	MK0	25	66260334913
3064	0.6	0.6	4	Cylindrical Ø 10	40	66260155917
3084	0.8	0.8	4	MK1	40	66260155970
3084	0.8	0.8	4	MK0	25	66260139868
3084	0.8	0.8	4	Cylindrical Ø 10	40	66260137229
30124	1.2	1.2	4	MK1	40	66260136169
30124	1.2	1.2	4	MK0	25	66260138367
30124	1.2	1.2	4	Cylindrical Ø 10	40	66260195542

Order sample

Туре	Shank	Clamping length
3084	Cylindrical Ø 10	40

Other shank dimensions available on request.

All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 1 item, delivery: 4 weeks

WINTER

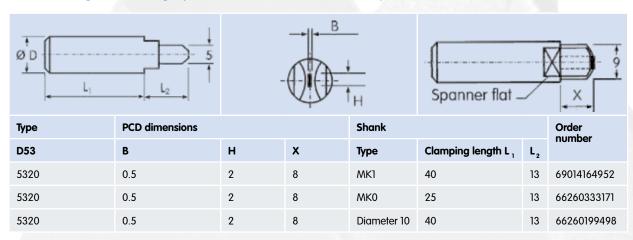
Profile Dressers

> Gear ressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers


Dressing Parameters

D53 single point diamond dressers with PCD plates

This dresser has been specially designed for conditioning centreless regulating wheels. It consists of a PCD plate gripped in a holder. The advantage of PCD over natural diamond is that its precise geometry remains constant over the whole of its working life. This guarantees a uniformly reproducible high surface finish without the need to change any set variables such as feed. It is therefore most suitable for CNC dressing processes.

Standard range of D53 single point diamond dressers with PCD plates

Order sample

Туре	Shank	Clamping length
5320	Diameter 10	40

WINTER Facts

Profile Dressers

Gear Dresser

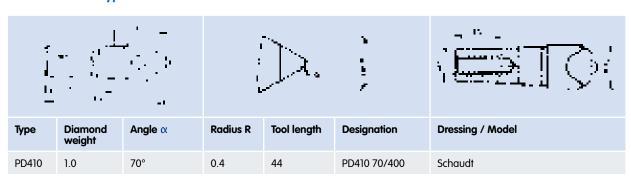
CNC

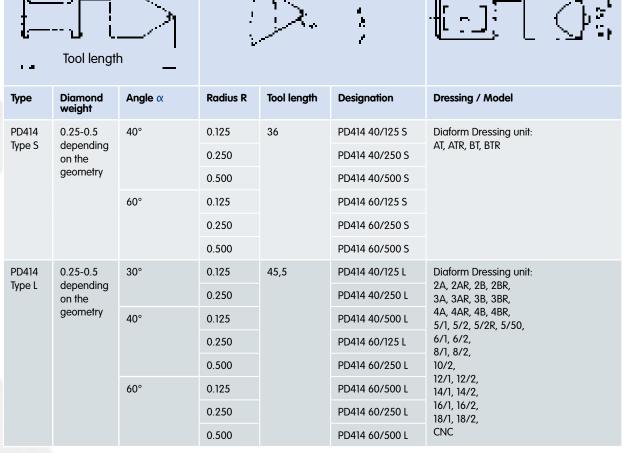
Stationary Dressers

Ancillary

Dressing Parameters

Profile diamond, ground


Profile diamonds are high quality dressing tools available for all major dressing units (e.g. Diaform, Schaudt, and Fortuna).


These tools are exceptionally economical as their angles and radii can be reground Please note that the number of possible regrinding operations depends on the shape and size of the diamond.

In addition to the durable and extremely high-specification natural diamond tools, we also offer these tools with CVD and PCD inserts.

Profile diamond types

All dimensions in mm

Minimum order quantity for articles not in stock: 1 item, delivery: 4 weeks

WINTER Facts

Profile Dressers

> Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

¹⁾ Available ex stock

WINTER Facts


Profile Dressers

Gear

CNC

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Standard range of profile diamonds

Designation α / R	Dimensions Ø x L	ct	Order number
30/250L		0.25	66260343187
40/125L		0.25	66260340672 1)
40/250L		0.25	66260351876 ¹⁾
40/125L		0.33	66260389254 ¹⁾
40/250L		0.33	66260339381 1)
60/250L		0.33	66260340002 1)
60/500L	9.52 x 45.5	0.33	66260375854
30/125L		0.50	66260339047 1)
30/250L		0.50	66260339689
40/125L		0.50	66260199494
40/250L		0.50	66260368449
40/500L		0.50	66260339689 1)
60/500L		0.50	66260336405 ¹⁾

Special Shapes

In addition to the standard types other geometries are available upon request.

Unground Profile diamond tools or WINTER Diamond Fliesen are recommended for the pre-profiling process.

For Diaform units the following WINTER Fliese is available ex stock.

Shape	W	X	Holder geometry	Diamond size	Bond	Order number
1TFDS90	10	12	Z9.52-30-5-15	D711	T645	66260384883 ¹⁾

Info

Contact for orders and reworking of profile diamonds: Saint-Gobain Diamantwerkzeuge GmbH & Co KG

Unstrutweg 1 Tel. +49 3641 4531 0 D-07743 Jena Fax +49 3641 4531 25

WINTER

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact

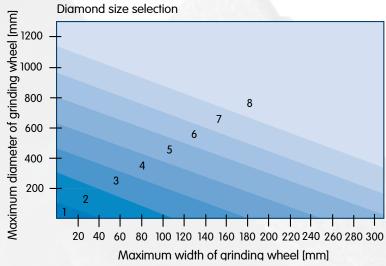
All dimensions in mm

1) Available ex stock

Minimum order quantity for articles not in stock: 1 item, delivery: 4 weeks

Single point dressers with natural diamonds

Single point dressers are used for straight dressing and for dressing grinding wheels with simple profiles.


Diamonds have a number of working points, depending on the grade. Repositioning the diamonds enables these to be activated in turn. Please send your dresser back to us in good time. Re-brazing the diamond at the factory increases the service life of the tool and makes it even better value for money.

Selecting the right dresser

We have made it easy for you to select the most suitable dresser:

- Choose the size of diamond from the diagram according to the width and diameter of your grinding wheel,
- then choose the best tool from the table below.

Recommended diamond size [ct]					
1	0.150.35				
2	0.250.50				
3	0.350.75				
4	0.501.00				
5	0.601.25				
6	0.701.50				
7	0.851.75				
8*	1.002.00				

* Diamonds >2 ct available on request

<u>p</u> 800 +
5 600 - 6
400 — 5 4
800
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
Maximum width of grinding wheel [mm]
Recommended diamond size [ct]

Stationary Dressers

WINTER

Profile Dressers

Gear

CNC

Ancillary

Dressing Parameters

Type of dressing	tool	Grade of diamond	Description
1		Basram	Top grade, at least 4–6 working points, regular octahedron, no inclusions, no cracks
		Diacar	Good industrial grade, at least 3–5 working points, regular octahedron, virtually no inclusions, no cracks
	LEA (single point dressers)	Vatom	Standard grade, at least 2-3 working points, limited irregular shape, few inclusions, no cracks
		ZA	Normal grade, at least 1-2 working points, few inclusions and may have cracks
		Industry	Simple industrial grade, at least 1 working point
4	LEW ('basic' single point dressers)	Basic	Basic grade with one working point

Order sample

Type of dresser	Diamond [ct]	Grade of diamond	Holder	The holder of a single point dresser can also be made with a head. de-
LEA -	0.5 -	Vatom -	MK1-40	pending on the size of the diamond.

Range of single point dressers in stock

Specification	Grade of dia- mond	Shape – Overall length	Diamond [ct]	Working points	Order number
LEA-1-Diacar-MK1-40	Diacar	MK1 × 40	1.00	4	66260195848 1)
LEA-1-Vatom-MK1-40	Vatom	MK1 × 40	1.00	3	66260382005 1)
LEA-1-Standard-MK0-25.5	Industry	MK0 × 25.5	1.00	2	66260385415 1)
LEA-1-Standard-MK1-40	Industry	MK1 × 40	1.00	2	66260389207 1)
LEA-0.5-Standard-Z8-30	Industry	Ø 8 × 30	0.50	2	66260386391 1)
LEA-0.5-Standard-MK0-25.5	Industry	MK0 × 25.5	0.50	2	66260384683 ¹⁾
LEA-0.5-Standard-MK1-40	Industry	MK1 × 40	0.50	2	66260386875 1)
LEA-0.33-Standard-MK1-40	Industry	MK1 × 40	0.33	2	66260387542 1)

Range of 'basic' single point dressers in stock

Specification	Grade of dia- mond	Shape – Overall length	Diamond [ct]	Working points	Order number
LEW-0,25-MK0-25.5	Basic	MK0 × 25.5	0.25	1	66260342633 1)
LEW-0.1-MK1-40	Basic	MK1 × 40	0.10	1	66260386731 1)
LEW-0.1-Z8-90	Basic	Ø 8 × 90	0.10	1	66260386964 ¹⁾
LEW-0.1-MK0-25.5	Basic	MK0 × 25.5	0.10	1	66260387348 ¹⁾
LEW-0.1-Z8-30	Basic	Ø 8 × 30	0.10	1	66260389256 ¹⁾

All dimensions in mm

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

¹⁾ Available ex stock

Rondist rotatable tools with diamond or CVD

An economical multi-point dressing tool with the functional characteristics of a single-point dresser.

A number of individual diamonds can be used in sequence. Turning the wheel replaces the used diamond grit with a new one. These tools can be supplied with natural diamonds and CVD, for both profiling and straight dressing. The table below shows the commonest types. They can also be made on request with e.g. differing densities of diamond needles on the circumference.

		Grinding	Diamona		Quantity of hard n	naterial	
	Туре	Grit size [mesh]	Dia- meter [mm]	specifica- tion	Size Weight	Number	Order number
200 7°20 200 000 000 000 000 000 000 000 000 0	RO2096	46 - 80	< 600	Diamond needles	2 ct	96	69014185803 ¹⁾
	RO5096	36 - 60	> 600	Diamond needles	5 ct	96	66260390774 1)
	RO1008	46 - 100	≤ 1000	Triangular diamonds	1.30 ct	8	69014185801 ¹⁾
. Тот пд -	RO1008	46 - 100	≤ 1000	Triangular CVD	Length of sides = 3.5 mm Depth = 1.0 mm	8	66260354350 1)
	RO15/5	60 - 120	5 - 40	Diamond grit D501	0.65 ct	Multi- layer	66260389341 ¹⁾

WINTER Facts

Profile Dressers

Gear

CNC

Stationary Dressers

Ancillary

Dressing Parameters

Service Glossary Contact

Holders for rotatable tools

Tiolders for fordiable foots		
Specification	Shape of holder	Order number
2096/5096	MK1	66260385746
2096/5096	MK0	66260386916
2096/5096	Z12-35	66260381329
1008	MK1	66260386640
1008	MK0	7958703355
1008	Z10-39.5	66260391408
W15/5	MK1	69014125429
W15/5	MK0	66260385884
W15/5	W15/5	66260370419

All dimensions in mm

1) Available ex stock

PCD and CVD insert dressers

This economical tool has three working points on a defined radius that can be brought into play by rotating the insert.

A certain amount of regrinding is possible to create the next largest radius.

Tool	Туре	Shank length A	Radius R
	PCD	6.0	0.125
		6.0	0.200
		6.0	0.250
		6.0	0.500
		6.0	0.800
		6.5	0.125
		6.5	0.200
		6.5	0.250
		6.5	0.500
2 2		6.5	0.800
		7.0	0.125
6 15		7.0	0.200
		7.0	0.250
-		7.0	0.500
		7.0	0.800
	CVD	6.0	0.125
		6.0	0.200
		6.0	0.250
1		6.0	0.500
		6.0	0.800
		6.5	0.125
		6.5	0.200
		6.5	0.250
		6.5	0.500
		6.5	0.800
		7.0	0.125
		7.0	0.200
		7.0	0.250
		7.0	0.500
		7.0	0.800

All dimensions in mm

Minimum order quantity for articles not in stock: 1 item, delivery: 4 weeks

CNC Dressers

WINTER Facts

Profile Dressers

Gear

Ancillary Dressers

Stationary Dressers

Dressing Parameters

Dresser holder	Designation	Size
	PKD81A-966/1	MK1
	PKD81A-966/2	MK1
	PK81A-966/3	Cylindrical 12/10/8

More holder shapes on request

Order sample

Туре	Diamond	Dimensions	Radius
Insert dresser	PCD	6.0 mm	0.125 mm

Info

Contact for orders and reworking of PCD and CVD insert dressers:

Saint-Gobain Diamantwerkzeuge GmbH & Co KG

Unstrutweg 1 07743 Jena, Germany Tel. +49 3641 4531-0 Fax +49 3641 4531-25

WINTER

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Toolholders and shanks for common machine types

Most of our stationary dressers are manufactured in standard sizes and kept in stock. The tools can be fastened to a suitable holder or shank to match any machine toolholder. We give here a summary of the most common holders and shanks. Please also consult our section entitled 'Toolholders and shanks for diamond Fliesen® tools'.

Diamond holder to DIN 228

	Туре	Machine mounting
	400	MK1
	400K	MKI
	402	MKO
	402K	MKO
* X	403	Cylindrical

Other shank dimensions on request.

All dimensions in mm

Dressing Parameters

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Туре	Machine mounting
405	Landis a Ø 6; Ø 6.5; Ø 8
406	D (diamond tip) centred

Other diamond holders

	Туре	Machine mounting
2 m 3 m 1 m 2 m 2 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m 3	407	Jung NT 65 taper 1:13.15
Frige 1 30.79	409	Jung JgN 1751 taper 1:13.15
Kessel 1 75	411	Jung JgN 1751 taper 1:20
Reserve 1 19 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	412	Jung FA 42-12 taper 1:10

Other shank dimensions on request.

All dimensions in mm

	Туре	Machine mounting
	413	Jung C 8 taper 1:13.15
	417	Jung C 8 taper 1:20
	420	Niles
	421	Niles
Vector 1 to 2	422	Kolb KZ 1 + 2 taper 1:50
	424	Cover

Other shank dimensions on request.

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact

All dimensions in mm

Multi-point dressers

Multi-point dressers consist of a holder and a diamond section. The dimensions of the diamond section, the grit size and the ratio of the bond to the diamond grit are determined by the grinding wheel to be dressed. If you supply us with your individual grinding wheel parameters we shall be pleased to recommend a suitable multi-point dresser. Please specify the holder and the mounting angle according to your machine mounting system (cylindrical or tapered e.g. MK1, MK0). In addition to their short delivery times multi-point dressers have more to offer:

Lower costs

Although the actual diamond content of multi-point dressers is usually much higher than that of single-point dressers, the price is lower because the diamonds used are so very much smaller.

Faster stock removal

As far more diamonds are in contact with the grinding wheel, the working load is distributed between several diamond tips and this enables the feed to be greater. Result: faster removal of material from the grinding wheel. The diamonds can be arranged in various different ways, depending on the application.

Long service life

Multi-point dressers wear far more slowly than single-point dressers. There is no need to rotate or regrind the points. Multi-point dressers are robust tools and considerably less sensitive than single-point dressers.

D21 multi-point dressers with natural diamond

A robust tool for the straight dressing of grinding wheels for peripheral and surface grinding.

The uniform setting pattern and the special arrangement of the diamonds guarantee a relatively uniform degree of coverage (the number of diamonds making contact).

WINTER Facts

Profile Dressers

Gear

CNC

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

	Туре	Segment dimensions		Diamond Shank			Order number	
	D21	Width B	Height H	Number / rows	Grit size	Shape / D	Clamping length	Order Homber
- D -	2101	12	10	3	711	14.8	22	66260196334
	2102	12	6	2	711	11	40	66260373763
	2103	12	10	3	1001	10	60	66260383028
	2104	12	6	2	1001	16	50	66260387928
	2105	18	10	3	711	10	40	66260322879
4,5	2106	18	6	2	711	12	50	66260336054
H 10	2107	18	10	3	1001	8	10	66260391179
B 7	2108	18	6	2	1001	10	40	66260337072
TT /αl	2109	18	10	3	1500	10.9	30	66260320914

Order sample

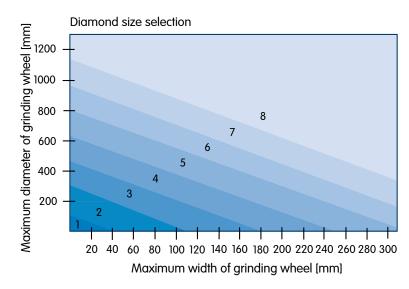
Туре	Shank / D	Clamping length	Mounting angle / °
2104	16	50	0

All dimensions in mm

Minimum order quantity for articles not in stock: 1 item, delivery: 4 weeks

Igel® multi-point dressers

A robust tool for the straight dressing of circumferential grinding wheels and wheels for surface grinding.


Igel® dressers are easy to handle and very economical in use. A great advantage of the Igel® is that it can be used at high dressing feed rates.

Selecting the best Igel® tool

We have made it easy for you to select a suitable Igel®:

- From the diagram, choose the diamond size and content of the Igel®.
- then choose the best tool from the table below.

lgel®	Dimensions of diamond section (diameter Ø and length X)	Diamond [ct]
IG 1	8 × 4	1
IG 2.5	8 × 11	2.5
IG 3.5	8 × 11	3.5
IG 5	11 × 11	5

Order sample

Bond (first letter of the bonding material)	Size of Igel®	Diamond [ct]	Dimensions	Holder	Grit size	Bond
Н	IG -	2.5 -	8 - 11 -	MK1-40	D 1001	H710

All dimensions in mm

WINTER

Profile Dressers

> Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Dona io

Bond for all alumina grinding wheels, including sintered alumina

lgel [®]	Grinding wheel grit size	Grit size of Igel®	Bond
	60 - 80	D711	H710
IG 1, IG 2.5, IG 3.5, IG 5	46 - 60	D1001	H710
	36 - 46	D2240	H710

Bond for SiC grinding wheels

lgel [®]	Grit size Grinding wheel	Grit size of Igel®	Bond
	60 - 80	D711	H770
IG 1, IG 2.5, IG 3.5, IG 5	46 - 60	D1001	H770
	36 - 46	D2240	H770

Igel® range in stock

.gc. range in croan				
Specification	Dimensions	Diamond		Order number
	Diameter D × Length X	Grit size	ct	Order Homber
HIG1-8-4-MK1-40*D1001 H710	8 × 4	D1001	1.0	66260195955 1)
HIG2.5-8-11-MK1-40*D711 H710	8 × 11	D711	2.5	66260387566 1)
HIG2.5-8-11-MK0-25.5*D1001 H710	8 × 11	D1001	2.5	66260383700 1)
HIG2.5-8-11-MK1-40*D1001 H710	8 × 11	D1001	2.5	66260195957 1)
HIG2.5-8-11-MK1-40*D2240 H710	8 × 11	D2240	2.5	66260385203 1)
HIG3.5-8-11-MK0-25.5*D711 H710	8 × 11	D711	3.5	66260389441 1)
HIG3.5-8-11-MK1-40*D711 H710	8 × 11	D711	3.5	66260195960 ¹⁾
HIG5-11-11-MK1-40*D711 H710	11 × 11	D711	5.0	66260195972 1)
HIG5-11-11-MK1-40*D1001 H710	11 × 11	D1001	5.0	66260195959 1)
HIG5-11-11-MK1-40*D2240 H710	11 × 11	D2240	5.0	66260195953 1)

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

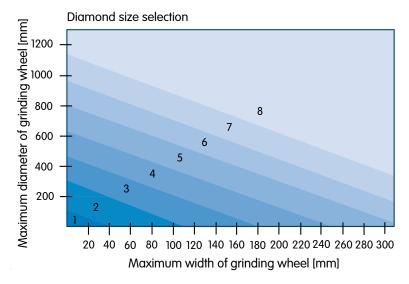
Ancillary Dressers

Dressing Parameters

pro-dress® multi-point dressers

The design of the pro-dress® is similar to that of the Igel®. The pro-dress® is used for the straight dressing of wheels with fine and very fine grit sizes for flat grinding and peripheral grinding.

Its low dressing forces make it especially useful for external cylindrical grinding and fine surfaces.



Selecting the right tool

We have made it easy for you to select the most suitable pro-dress® tool:

- From the diagram, choose the diamond size and content of the pro-dress[®].
- then choose the best tool from the table below.

pro-dress®	Dimensions of diamond tip (diameter D and length X)	Diamond [ct]
pro48	4 × 8	0.6
pro58	5 × 8	1
pro68	6 × 8	1.3
pro88	8 × 8	2.4

Order sample

Bond (first letter)	Design	Dimensions	Holder	Grit size	Bond
Н	pro58 -	5 - 8 -	MK1-40	D151	H760

pro-dress® for alumina grinding wheels

pro-dress®	Grinding wheel grit size	Grit size pro-dress®	Bond
pro48, pro58, pro68, pro88	320 - 600	D76	H760
	220 - 320	D107	H760
	180 - 220	D151	H760
	120 - 180	D213	H760
	100 - 120	D301	H760

All dimensions in mm

WINTER

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

pro-dress®	Grinding wheel grit size	Grit size pro-dress®	Bond
pro48, pro58, pro68, pro88	80 - 100	D426	H710
	60 - 80	D601	H710
	54 - 60	D711	H710

pro-dress® for dressing alumina grinding wheels (low hardness grades, e.g. A and B)

pro-dress®	Grit size Grinding wheel	Grit size pro-dress®	Bond
	320 - 600	D76	ST469
	220 - 320	D107	ST469
	180 - 220	D151	ST469
pro48, pro58,	120 - 180	D213	ST469
pro48, pro58, pro68, pro88	100 - 120	D301	ST469
	80 - 100	D426	ST469
	60 - 80	D601	ST469
	54 - 60	D711	ST469

pro-dress® for silicon carbide (SiC) grinding wheels

pro-dress®	Grit size Grinding wheel	Grit size pro-dress®	Bonds
	320 - 600	D76	H770
	220 - 320	D107	H770
	180 - 220	D151	H770
pro48, pro58,	120 - 180	D213	H770
pro48, pro58, pro68, pro88	100 - 120	D301	H770
	80 - 100	D426	H770
	60 - 80	D601	H770
	54 - 60	D711	H770

pro-dress® range in stock

Consideration	Dimensions	Diar	Order number	
Specification	Diameter D × Length X	Grit size	ct	Order number
HPRO48-4-8-Z6-24*D301 H760	4 × 8	D301	0.6	66260384896 1)
HPRO58-5-8-Z6-25*D426 H710	5 × 8	D426	1	66260196226 ¹⁾
HPRO68-6-8-MK0-25.5*D213 H760	6 × 8	D213	1.3	66260196258 ¹⁾

Stationary Dressers

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Ancillary Dressers

Dressing Parameters

Technical notes

Dressing side feed and positions in relation to the grinding wheel for stationary dressing tools

Grinding wheel	Recom- mended Grinding wheel speed [rpm]										
grit size dr	dressing feed (mm/rev)	500	1000	1500	2000	2500	3000	3500	4000	4500	5000
150	0.05	25	50	75	100	125	150	175	200	225	250
100	0.15	75	150	225	300	375	420	525	600	675	750
60	0.25	125	250	375	500	625	750	875	1000	1125	1250
46	0.35	175	350	525	700	875	1050	1225	1400	1575	1750
< 46	0.45	225	450	675	900	1125	1350	1575	1800	2025	2250
		Dressing feed [mm/min]									

^{*} Example for grinding wheel with 60 mesh grit and speed n = 3000 rpm, dressing feed 750 mm/min

Grinding wheel	Recom- mended	Grinding wheel speed [rpm]										
grit size	dressing feed (mm/rev)	5500	6000	6500	7000	7500	8000	8500	9000	9500	10000	
150	0.05	275	300	325	350	375	400	425	450	475	500	
100	0.15	825	900	975	1050	1125	1200	1275	1350	1425	1500	
60	0.25	1375	1500	1625	1750	1875	2000	2125	2250	2375	2500	
46	0.35	1925	2100	2275	2450	2625	2800	2975	3150	3325	3500	
< 46	0.45	2475	2700	2925	3150	3375	3600	3825	4050	4275	4500	
		Dressing feed [mm/min]										

WINTER

Profile

Gear

CNC ressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

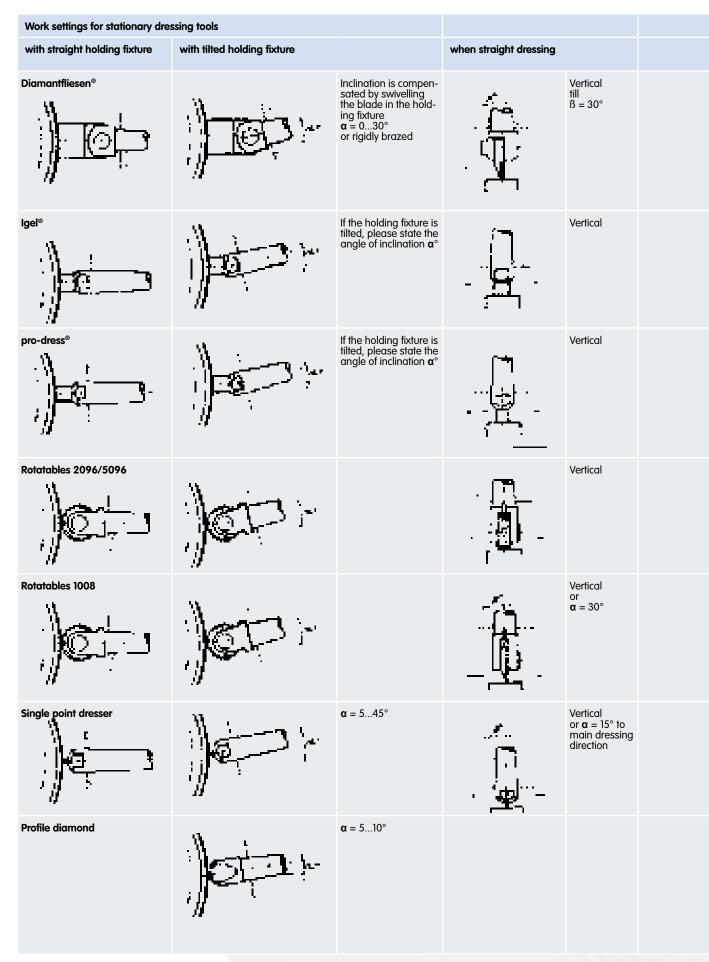
> Service Glossary

WINTER

Facts

Profile Dressers

Gear Dressers


CNC

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

All dimensions in mm

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact

Work setting for	Effective	Contact	Dressing	Dressing side	Other notes
profile dressing	cutting width b _D [mm]	ratio U _d	infeed amount a _{ed} [mm]	feed f _{ad} [mm/U]	
β = 30°45°	~ 0.8 · d _k d _k = theoretical diameter of diamond grit	2 - 8	0.01 - 0.03	0.05 - 0.5	Slightly diagonal setting possible when dressing straight =Recutting effect =feiner surface quality
			0.01 - 0.05	0.3 - 1.0	Because of the large number of active diamonds during dressing the dressing feed for and/or the feed rate v _{sod} must be increased accordingly
			0.005 - 0.3	0.005 - 0.5	Because of the large number of active diamonds during dressing the dressing feed f_{od} and/ or the feed rate v_{tod} must be increased accordingly
	$\sim 0.8 \cdot d_{\rm k}$ per active grit		0.01 - 0.05	0.3 - 1.0	Because of the four active diamonds the dressing feed f_{pd} and/or the feed rate v_{fad} must be increased accordingly
β = 3045°	~ 0.8 · d _k	2 - 8	0.01 - 0.03	0.05 - 0.5	
	According to the degree of wear	2 - 8	0.01 - 0.03	0.05 - 0.15	When sharpness deteriorates, rotate diamond insert approx. 60° about its own axis, remount in good time. Do not allow wear flats to become larger than approx. 1 mm² Stop! Too late!
β = 3045°	According to the profile of the diamond (angle/radius)	2 - 8	0.01 - 0.02	0.03 - 0.10	Please observe the manufacturer's instructions for equipment and machines

All dimensions in mm

Checklist

for stationary dressing tools

Company Technical advice to improve Offer Order	results	A.
1. Workpiece 1.1 Drawing of workpiece		
1.2. Workpiece material		
1.3. Surface finish required		R _a , R _t , R _z
2. Machine 2.1 Manufacturer		
2.2 Model/type		
2.3 Grinding process	Angular plunge grinding	Straight plunge grinding:
2.4 Cooling lubricant	1	
3. Grinding wheel 3.1 Dimensions		mm
3.2. Specification		
3.3 Manufacturer		
4. Diamond dresser in use 4.1 Designation		
4.2 Dimensions		mm
4.3. Specification		
5. Dressing process 5.1 Straight dressing	Circumferential	On the face \Box
5.2 Copy dressing / profile	dressing	
6. Current dressing insert data 6.1 Grinding wheel cutting	speed during dressing v _{sd} =	m/s
6.2. Dressing infeed/ stroke	a _{ed} =	mm
6.2. Dressing infeed/ stroke	f _{ad} =	mm
7. Requirement or problem Vf _{ad} =		mm/min

Please send the completed form to your expert advisor or directly to our product management: tel +49 40 5258-220, fax +49 40 5258-215

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Ancillary dressers

Standard dressing tools keep grinding wheels in shape and in the best possible condition to do their jobs. The choice of process to be used depends on the grinding machine, the type of dressing unit, the shape and type of the grinding wheel, as well as the workpiece to be machined.

We offer an appropriate dressing solution for every application – from the dressing tool to the dressing unit. Most standard dressing tools are kept in stock and are available immediately. This chapter includes details of rotary dressing cups for internal grinding, sharpening stones for subsequent sharpening of grinding wheels and manual dressers for hand dressing of alumina and silicon carbide wheels.

- 100 Dressing tools for vitrified bonded grinding wheels
- 102 Dressing tools for resin-bonded grinding wheels
- 102 Electroplated and sintered metal bond dressing tools
- 103 Dressing tools for diamond and cBN grinding wheels
- 103 WINTER dressing unit
- 103 Cleaning and sharpening stones
- 104 Manual dressing tools
- 104 D20 manual dressing tool with natural diamond in an electroplated bond
- 105 Multigrit manual dressing tool with natural diamond in a sintered metal bond

Information

Further information on applications and products can be found at www.winter-superabrasives.com

Dressing tools for vitrified bonded grinding tools

Dressing pins and cups are particularly suitable for dressing small grinding wheels for internal cylindrical grinding.

Diamond dressing pins for dressing vitrified bonded cBN grinding wheels										
	Shape	D	Т	x	s	L	Grit size	Bond	Concentration	Order number
	4BZ 07B	15	4	1	4	30	D301	BZ 387.1	C135	66260100343 ¹⁾
	50S 07B	15	10		4	30	D426	G825	\$33	60157644198 1)

Diamond dressing cups for dressing vitrified bonded cBN grinding wheels									
	Shape	D	т	x	Н	Grit size	Bond	Concentration	Order number
6 h	2BZ6A9	15	6	1	7	D301	BZ 387	C135	66260379145

Ancillary Dressers

Dressing Parameter

Diamond dressing cups for dressing vitrified bonded cBN grinding wheels									
	Shape	D	т	x	н	Grit size	Bond	Concentration	Order number
1.5	1BZ6A9	15	2	1.5	7	D213	BZ 387.1	C135	66260112087

WINTER Facts

Profile Dressers

Gear Dressers

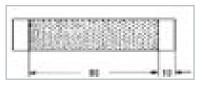
CNC Dressers

Stationary Dressers

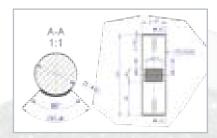
> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact


All dimensions in mm

1) Available ex stock


Dressing tools for resinbonded grinding wheels

Electroplated and sintered metal bond dressing tools

WINTER also offers suitable tools for dressing resin-bonded diamond and cBN grinding wheels. Electroplated and sintered metal-bonded dressing tools are available from stock.

WINTER dressing block Application Shape Specification Order number For truing resin bond diamond and cBN grinding wheels on surface grinders. If used with coolant, subsequent sharpening with WA150GV sharpening stone or WINTER stone No. 2 is required. Shape Specification Order number 1509H-80-20-8 D301 / S11 66260134287 10 662601347 10 662601347 10 662601347 10 662601347 10 662601347 10 662601347 10 662601347 10 662601

WINTER dressing cylinder			
Application	Shape	Specification	Order number
For dressing resin bond diamond and cBN grinding wheels on cylindrical grinders. If used with coolant, subsequent sharpening with WA150GV sharpening stone or WINTER stone No. 2 is required.	1S44B-40-20	D301 / S11	60157642712

WINTER Facts

> Profile Dressers

Gear Dresser

CNC Dresser

Stationary Dressers

Ancillary

Dressing Parameter

Service Glossary Contact

All dimensions in mm

¹⁾ Available ex stock

Dressing tools for diamond and cBN grinding wheels

WINTER dressing unit

This brake-controlled dressing unit, for dressing diamond and cBN grinding wheels, comes complete with two SiC wheels, one 37 C60-MV and one 39 C802-15V Order no. 66260195821

Replacement grinding wheels	For grit sizes	Order number
37C46-N5VS	D91 - D181	699366794121)
39C60-MV	D64 - D126	662530516241)
39C802-IV	≤ D64	66253052726 1)
Accessories	1 set consisting of: 3 brake segments, 3 springs and 3 screws	662602746701)

Only use dry; subsequent sharpening with a WINTER stone previously soaked in water should be used as necessary

Cleaning and sharpening stones

- · · · · · · · · · · · · · · · · · · ·	3	
Cleaning and sharpening stones	WINTER	Order number
WINTER stone No. 1AW (100×20×20)	Special white fused alumina, vitrified bonded, 360 mesh, for sharpening resin bond grinding wheels with grit size < D46	662603956391)
WINTER stone No. 2 (100×24×13)	Special white fused alumina, vitrified bonded, 180 mesh, for sharpening resin and metal-bonded grinding and cut-off wheels with grit size \geq D46	66260195816 ¹⁾
WINTER stone No. 3 (100×40×15)	Silicon carbide, rubber-bonded, 80 mesh, for cleaning and sharpening electroplated and vitrified bonded grinding wheels and pins	662601958171)
WINTER stone No. 3A (80×15×10)	See WINTER stone No. 3	662603893571)
WINTER stone No. 3B (100×50×25)	See WINTER stone No. 3	662603861671)
WINTER stone No. 4 (90×70×20)	Special pink fused alumina, vitrified bonded, 60 mesh, for sharpening metal bond grinding wheels with grit size \geq D251	60157642665 ¹⁾
WINTER stone No. 5 (100×50×25)	See WINTER stone No. 2	662603890541)
Cleaning and sharpening stones	flex • vit	Order number
Stone WA150GV (25×25×150)	Cleaning and sharpening vitrified and resin bond grinding wheels \geq D54, recommended for sharpening Q-Flute 2	6993662164311
Stone WA220GV (25×25×150)	Cleaning and sharpening vitrified and resin bond grinding wheels	699366216301)
Stone WA320GV (25×25×150)	Cleaning and sharpening vitrified and resin bond grinding wheels \leq D46	699366513801)

All dimensions in mm

WINTER Facts

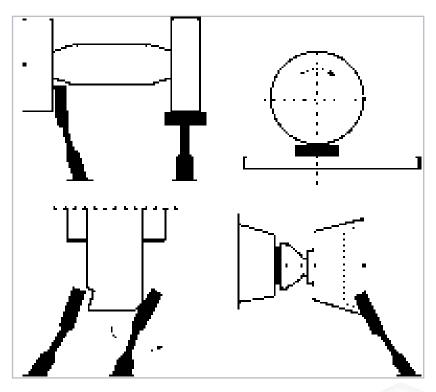
Profile Dressers

Gear ressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers


Dressing Parameters

¹⁾ Available ex stock

Manual dressing tools

You can use these robust tools to dress glazed and loaded conventional vitrified grinding wheels. This will give you a better grinding tool topography and improve the radial running truth of the grinding wheel. The high concentration of diamonds in these dressers ensures a long service life with good wear resistance and enables sharpening the wheels without damaging the tool. They are designed for the rapid dressing of grinding wheels up to 1000 mm in diameter with grain sizes of 36–120 mesh.

Examples showing the use of the straight and side versions of our manual dressing tools

D20 manual dressing tool with natural diamond in an electroplated bond

The 2001 and 2002 versions are principally for particularly hard grinding wheels such as SiC, supplied also with an M6 thread handle to be screwed in at the side or the end.

سعر			۳,		
	•			-	•
_				•	
		-			
				•	
				•	

Туре	Segment dimensions		Design		Diamond content	Order number
D 20	L	В	lateral	straight	[ct]	
2001	45	12	X	X	5	6626013914111
2002	20	12	x	x	2.2	66260195353 ¹⁾

All dimensions in mm

1) Available ex stock

|

WINTER

Profile Drossers

Gear Dressers

CNC Dresser

Stationary Dressers

Ancillary

Dressing Parameters

Service

Multigrit manual dressing tool with natural diamond in a sintered metal bond

Models Igel-P (side-mounted) and Igel-T (end-mounted) have a fixed handle. They are suitable for all alumina grinding wheels.

Туре	Segment dimensions		Design	Diamond con- tent [ct]	Order number
Igel	L	В			
Igel-P	25	7	lateral	1.3	66260134089 ¹⁾
Igel-T	25	7	straight	1.3	66260133388 ¹⁾

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers


Dressing Parameters

> Service Glossary Contact

All dimensions in mm

¹⁾ Available ex stock

Dressing parameters

The correct choice of dressing parameters is essential to optimize the grinding process. Dressing is a method of rapidly and flexibly influencing the active surface roughness and geometry of a grinding wheel, thereby changing its surface topography, profile accuracy, and the grinding forces during use.

108 Conditioning

108 Characteristics of conditioning processes

109 Process parameters

- 109 Infeed, a_{ed}, when dressing with stationary dressers and CNC dressing discs
- 110 Overlap ratio, U_d, for stationary and CNC dressing tools
- 110 Infeed, a_{ed}, when dressing with profile rollers
- 111 Speed ratio, q_d , of rotary dressing tools

113 General

- 113 Other influences on active surface roughness and workpiece surface finish when using profile roller dressers
- 114 Contact detection

Conditioning

Dres	Cleaning		
Profiling	Sharpening	Cleaning	
Macrostructure	Microstructure	Microstructure	
Imparting running truth and correct wheel shape	Producing the wheel topography	Elimination of chips from the chip spaces	
Intentional modification of grit and bond	Intentional setting back of the bond	No intention to modify the grinding wheel	

Dressing parameters have a very great influence on the behaviour of a grinding wheel. The use of CNC dressing tools enables quick and easy changes to the active surface roughness and geometry of a grinding wheel, thereby influencing its surface finish, profile accuracy and grinding forces.

The grinding results are influenced by the radial dressing infeed, $a_{ed'}$ and the axial dressing feed, f_{ad} . Together with the dressing feed, the diamond grit size is another important factor that affects the grinding result. The effective dressing width, $b_{d'}$, and the associated overlap, $U_{d'}$ affect the active surface roughness, $R_{is'}$ of the grinding wheel.

In the case of CNC dressing discs the dressing results are also affected by the speed factor, $q_{a'}$ and the direction of rotation, whether dressing is uni-directional (GL) or counter-directional (GGL). It is important to use a suitable coolant with adequate filtration during the dressing process.

When dressing with profile roller dressers, the roll is plunged into the grinding wheel surface. Its effect is achieved through the speed factor and direction of dressing as mentioned above. There is no lateral motion.

Characteristics of conditioning processes

System component	Process variables	Targets
Grinding wheel	Dressing forces	Grinding wheel profile
Dressing tool	Structure-borne noise signal	Grinding wheel running truth
Coolant conditions	Power from grinding and dressing spindles	Active surface roughness of the grinding wheel
Dressing parameters: – Overlap ratio (CNC) – Speed ratio – Grinding wheel speed – Infeed		Dressing wear ratio Workpiece quality

WINTER Facts

Profile Dresser

Dressers Dressers

CNC Dresser

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary

Process parameters

Infeed a_{ed} when dressing with stationary dressers and CNC dressing discs

With radial infeed, a_{ed} , the dressing tool advances towards and into the grinding wheel with each dressing pass. The total dressing infeed, $a_{ed tot}$, can be divided into roughing and finishing infeeds.

Dressing infeeds for alumina grinding wheels:

Total infeed a_{ed tot} for special fused alumina grinding wheels:

20 μm – 40 μm , depending on the grit size of the grind-

ing wheel

Total infeed $a_{ed tot}$ for sintered alumina grinding wheels:

 $10 \ \mu m - 20 \ \mu m$, depending on the grit size of the grind-

ing wheel

Dressing infeed for cBN grinding wheels with vitrified bonds:

Infeed a_{ed} per dressing pass:

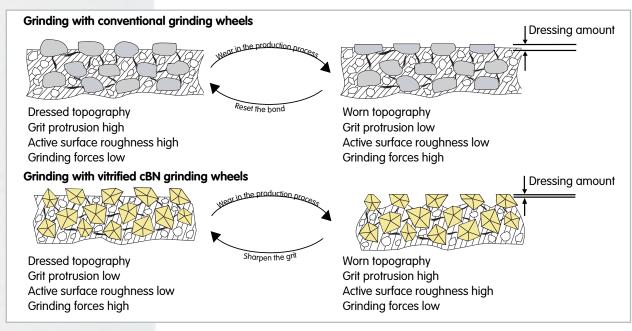
Maximum dressing amount a_{ed tot}:

1 μm – 3 μm

No more than 10% of the average grit diameter of the $\,$

grinding wheel

In general, cBN grinding wheels with vitrified bonds have a much longer interval between dressing events and therefore the number of dressing operations needed is far lower for a given output than when conventional grinding wheels are used.


Example using vitrified cBN grinding wheels

B126 indicates an average grit diameter of the grinding wheel of 118 µm, so infeed a_{out of} will be 10 µm – 12 µm

General notes:

- Avoid dressing passes without infeed a_{ed}
- Contact sensors are needed for accurate control and economics
- · Ensure that suitable coolant is used

There is a fundamental difference between dressing requirements needed for conventional grinding wheels and cBN grinding wheels with a vitrified bond:

WINTER

Profile

Gear Dressers

CNC ressers

Stationary Dressers

Ancillary Dressers

Dressing

Overlap ratio, U_d, for stationary and CNC dressing tools

In addition to the geometric and dimensional accuracy of a grinding wheel, the required active surface roughness, R,, plays an important role. It defines the surface finish of the ground workpiece.

Both CNC dressing tools and stationary dressing tools are driven over the grinding wheel profile to be dressed with an axial feed, f_{ad} . One of the advantages of CNC dressing is that different feed rates can be used on different sections of profile. Flat surfaces can be dressed with a smaller overlap ratio, $U_{A'}$ in order to prevent burning in these areas.

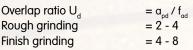
The overlap ratio, $U_{d'}$ is defined as the number of revolutions executed by a grinding wheel, during which the dressing tool has traversed by its exact contact width, and

 $= a_{pd}/f_{ad}$ $\approx d_k / [v_{fad} / n_{sd}]$ $\approx d_k / [v_{fad}^* ds^* \pi / (v_{cd}^* \times 60,000)]$ [-] Overlap ratio

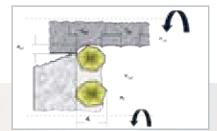
Suggested values:

Contact width of dressing tool [mm] Grit size of dressing tool [mm] ďs Diameter of grinding wheel [mm]

Axial feed for each grinding wheel revolution [mm]


[rpm] Grinding wheel speed [m/s] Cutting speed while dressing [mm/min]: Axial infeed speed while dressing

Lower U_d -


High active surface roughness of the grinding wheel

Higher U_d -

Lower active surface roughness of the grinding wheel

Rough grinding Finish grinding = 8 - 20Super finish grinding

WINTER

Profile

Stationary Dressers

Ancillary

Dressing **Parameters**

Contact

Infeed, a_{ed}, when dressing with profile rollers

With radial infeed, a ed, the dressing tool advances towards the grinding wheel with each dressing pass. The radial infeed depends on the grit size, hardness and dimensions of the grinding wheel, rigidity of the machine and dressing unit and the specification and developed length of the profile roller.

Dressing infeeds for alumina grinding wheels:

Total infeed, a_{ed tot}, for special fused alumina grinding wheels:

20 µm - 40 µm, depending on the grit size of the wheel

Total infeed, a_{ed tot}, for sintered alumina grinding wheels:

10 μm – 20 μm, depending on the grit size of the wheel

Dressing infeed for cBN grinding wheels with vitrified bonds: Maximum dressing amount, a ed tot:

No more than 10% of the average grit diameter of the grinding wheel

WINTER

Continuous dressing (CD)

In the continuous dressing (CD) process, the dresser is in continuous contact with the grinding wheel. The progressive reduction of the grinding wheel diameter must be compensated for during the grinding process by the CNC machine control. Through the continuous sharpening and profiling, a constant roughness and profile holding of the grinding wheel is obtained.

The dressing process is especially suitable for roughing and creep feed grinding processes.

Speed ratio, q_d, of rotary dressing tools

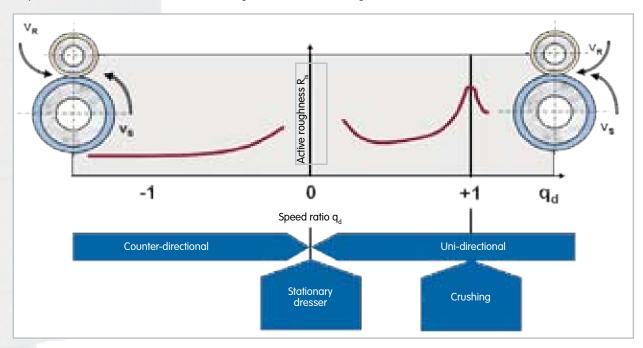
The speed ratio, q_d , between the rotary dressing tool and the grinding wheel has a considerable influence on the grinding wheel topography and consequently on the dressing and grinding result.

Recommended values for the speed ratio, q_d:

CNC dressing discs:

Uni-directional: +0.5 ...+0.85 Counter-directional: +0.5 ...+0.85

Profile roller dresser


Uni-directional: +0.3 ...+0.8 Counter-directional: -0.3 ...- 0.5

Vitrified cBN grinding wheels should usually be dressed in the same direction in order to achieve the greatest active surface roughness on the grinding wheel.

Uni-directional: +0.6 ...+0.9

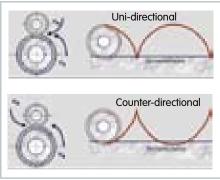
Attention

A speed ratio of +1 leads to increased dressing forces and can damage the tools.

WINTER Facts

Profile Dressers

Gea


CNC

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

The different dressing forces are explained by the different paths (cycloids) of the grinding wheel and roller dresser.

Dressing speed ratio

Circumferential speed of the roller dresser Circumferential speed of the grinding wheel when dressing Dressing speed ratio

Uni-directional Crushing = 1: Stationary dresser = 0: < 0: Counter-directional

Uni-directional dressing:

During uni-directional dressing the diamond moves along a shorter path (epicycloid), causing it to penetrate the grinding wheel surface at a more acute angle and producing a highly aggressive active surface roughness, $R_{\rm s}$, on the grinding wheel.

- Greater influence on the grinding wheel topography
- Higher dressing forces
- Higher stresses on the roller dresser

Counter-directional dressing:

During counter-directional dressing the path is much longer (hypocycloid) and the diamond penetrates the grinding wheel at a much flatter angle, producing a much lower active surface roughness, R_{ts}, on the grinding wheel.

- Lesser influence on the grinding wheel topography
- Lower dressing forces
- Lower stresses on the roller dresser

Notes

- 1. Wherever possible, dress at grinding speed
- 2. Please check Radial run-out Axial run-out Imbalance

Prevent dynamic imbalance

3. Avoid ratios that are whole numbers $n_s : n_D$

- Figure shows the dresser on the grinding wheel
- Patterns form on the workpiece

Dressers

CNC

WINTER

Profile

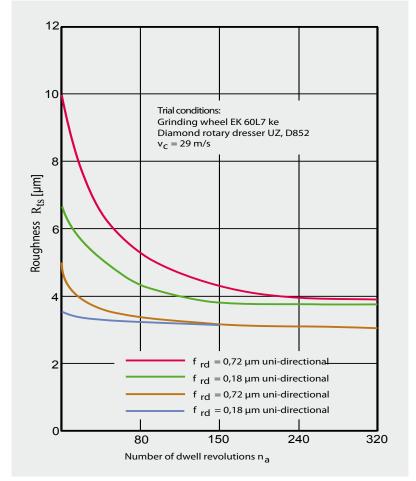
Stationary Dressers

Ancillary

Dressing Parameters

Contact

Genera


General

Other influences on active surface roughness and workpiece surface finish when using profile roller dressers

Dwell revolution

The figure shows the effect of the number of dwell revolutions on active surface roughness. In practical terms this means that after 80 counter-directional dwell revolutions or 160 uni-directional dwell revolutions the minimum active surface roughness is reached on the grinding wheel, and that if the diamond roller dresser remains in contact for any longer this roughness will remain unchanged. These absolute values apply to one particular dressing device. Designs that have different rigidities will have different absolute values, but the principle remains the same.

- R_{ts} Active surface roughness
- v_c Peripheral speed of the grinding wheel
- f_{rd} Dressing infeed per grinding wheel revolution

Effect of the number of dwell revolutions on active surface roughness according to G. Pahlitzsch and R. Schmidt 1)

Diamond grit size

In addition to the dressing conditions, the diamond grit size also affects the achievable grinding wheel surface roughness and consequently the surface finish of the workpiece. In the case of diamond roller dressers with hand-set diamonds, the required workpiece finish is obtained by adjusting the concentration and pattern of diamonds.

The roughness and waviness of the workpiece can be reduced by dressing with a correspondingly longer dwell time.

For diamond roller dressers with statistically distributed diamonds (type UZ), it is preferable to select a greater diamond density in the interest of greater active surface roughness whenever the workpiece profile allows this.

¹¹ G. Pahlitzsch and R. Schmidt "Wirkung von Korngröße und Konzentration beim Abrichten von Schleifscheiben mit diamantbestückten Rollen"

WINTER

Profile Dressers

> Gea Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

WINTER

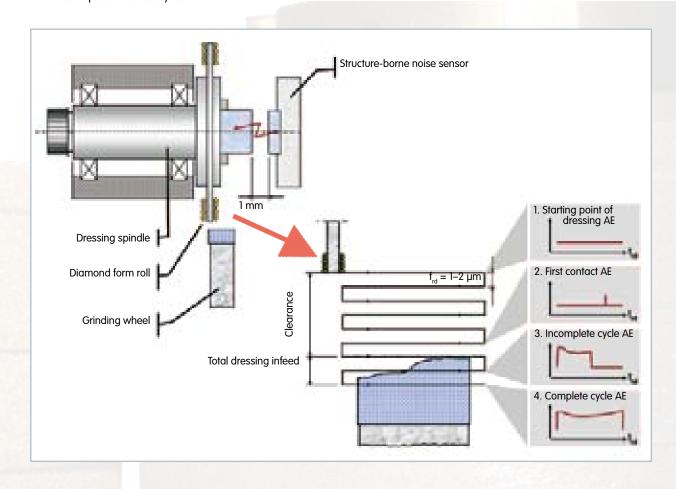
Dressing **Parameters**

Contact

Contact detection

A high-precision dressing spindle is required when a form roll is used to dress vitrified cBN or diamond grinding wheels. A contact detection device monitors the point at which the dressing disc touches the grinding wheel and supervises the complete dressing cycle.

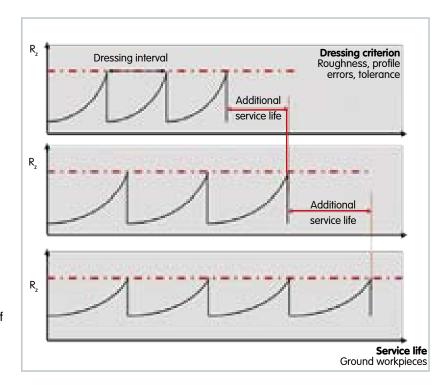
Contactless measurement using noise signals transmitted through the machine structure and subsequently displayed on the monitor guarantees minimum loss of the grinding wheel coating and retention of the chip space.


Minimizing the amount of dressing means that tool costs are markedly reduced and guarantees a high degree of process reliability together with a continuously controlled dressing and grinding process.

Source: Dittel

Advantages of contact detection:

- Grinding processes are displayed
- Grinding processes are optimized
- 'Dead times' are identified
- Cycle times are reduced
- Tool life is prolonged
- Weak points are analyzed


WINTER

Optimized dressing process

Initial process

Optimized grinding wheel Extended dressing cycles

By using contact detection optimized dressing results in a reduced dressing infeed and prolongs the working life of the grinding wheel

Comparison of time savings and working life

In order to minimize the amount of dressing when using vitrified cBN grinding wheels and exploit the potential tool life to the maximum, 'Touch dressing' is used for dressing and conditioning. Contact detection systems with rapid, reliable monitoring of the initial contact between grinding wheel and dresser permit dressing amounts in the range of a few microns and thus enable increased economy and productivity.

WINTER Facts

Profile Dressers

Gear Dressers

> CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Compendium

The WINTER brand represents over 160 years of heritage and grinding experience. Many companies worldwide involved in industrial production benefit from this expertise.

116 Service

In addition to design and production of grinding tools, WINTER offers you a multitude of services.

120 Glossary

Compiled for you: this little reference guide explains terms around grinding: bonds, roughness, material removal rates, etc.

130 Index

This catalogue-spanning index helps you to easily find the right information for your application and the corresponding grinding tools.

139 Contact

Whom to ask first?
Who is my nearest contact person?
Where can I get quick and easy
help?

Duefile

WINTER

Profile Dressers

Gear Dresser

CNC Dresse

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Service

Competition is keen, and cost pressures are acute. To improve productivity and technical capability, you need a supplier who co-operates efficiently. WINTER not only provides high performance grinding tools but can also assist in analysing your processes, to identify the best solution, and then to implement it together with you.

Advice

Our field service engineers and customer service team are here to help, and can offer advice on all WINTER products and grinding processes. Together with product management and our application engineering team, customised solutions will be found which meet your needs.

Product Development

WINTER, as the grinding industry's technology leader, invests heavily in Research and Development. Basic research supports new customer-specific product and application developments at our global Technology Centres. Our EGTC (European Grinding Technology Centre) with the R&D Department in Norderstedt, closely co-operate with our

Research and Technology Centres in the USA, France and China.

Process Optimisation

At our EGTC (European Grinding Technology Centre), we can evaluate your grinding processes using sophisticated sensing and measurement systems which you may not have access to. So we can demonstrate improvements to your process without interrupting your production. On your factory floor, our application and development engineers continue to support you. Our dedicated specialists are expert in the field of complex grinding systems, and can advise on new production strategies with the help of innovative process diagnostic technology. The result for customers is a fine-tuned production process, and optimised day-to-day operations.

Training and Continuing Education

We offer regular seminars on current issues and developments at our European Grinding Technology Centre (EGTC) in Norderstedt. Economic and advanced production processes are reviewed with top-class experts from different parts of the industry. We invite internal and external consultants on specific subjects to comment on the technological state-of-the-art and development trends.

Ask your field salesman for the latest calendar of scheduled seminars and get yourself registered.

Specific training programmes can also be arranged according to your individual requirements.

Just contact us - we will gladly make an offer that meets your needs.

WINTER offers seminars on topics such as:

- Tool Grinding Technology Forum (expert panel discussion)
- Grinding (basic training)
- Grinding fluids (focused technology review)
- Dressing technology (focused review)

Service

Field Instrumentation System (FIS)

Optimise your production process

Have us make a FIS process analysis and optimise your production process: field instrumentation system is a portable system to monitor and measure your grinding process. Exact and comparable data is obtained and can contribute to increase your performance:

- Process optimisation, reduction of cycle time
- Prolongation of tool life time
- Machine and process studies
- Analytical determination and benchmarking

Give it a try!

MDress - Mobile Dressing Unit

For better grinding results

Almost every CNC grinding machine can be upgraded by MDress, the mobile rotary diamond dressing unit. Using MDress ensures highly precise reconditioning of grinding wheel profiles. The grinding wheel achieves its ultimate axial and radial running truth directly on the main spindle. Our customers are enabled to test, for example, vitrified bonded grinding wheels, on the CNC grinding machine and obtain a more economic grinding result.

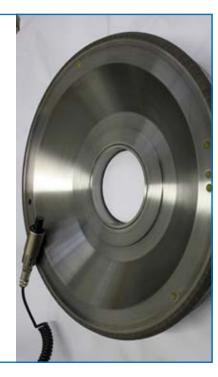
Our application engineers will give you support, to demonstrate an optimised dressing process with the MDress dressing system on your machine at your premises.

Just contact us.

RFID – Radio Frequency Identification

This technology makes it possible to transfer stored data from the grinding wheel to the grinding machine. The advantages are

The increased level of transparency


- Integrated tool-life monitoring
- Automated scanning and storage of tool use

Shorter set-up times

- Direct access to grinding wheel data by the machine control system
- Elimination of operator error in manual recording and entry of data

Improved profitability

 Reduced machine downtime by automatic data transfer between machine and grinding wheel

WINTER

Profile

Gea

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Glossary

For your reference: a short explanation of grinding terms

Bonds

To meet the challenges of the wide diversity of grinding applications, it is inevitable that a wide range of bond systems is required. Bonds are categorised according to the fundamental material type used, and many variations exist within each type.

Resin Bond Systems

These are based on either phenolic or polyimide resins, usually together with added fillers, as well as the abrasive grains. Resin bonds are at the lower end of the hardness scale, and are used in a wide range of applications due to their fast and cool grinding behaviour.

Sintered Metal Bonds

Most metal bonds are based on bronze, although harder systems may be based on steel or even hardmetal. Sintered bronze bonds are relatively soft and at their softest can overlap the hardest resin bonds. Steel and hardmetal bonds are more wear resistant, so therefore act harder and grip the abrasive grains more strongly, leading to longer tool life, although the abrasive can sometimes appear blunt.

Metal bonded grinding wheels generally grind more slowly, in most applications acting harder, and more grinding heat is developed than in resin bonded wheels. However, metal bonds can also readily dissipate heat, which also impacts the grinding process. Metal bonds are ideal for grinding wheels with sharp edge profiles, and for machining abrasive materials that would otherwise wear the bond. Furthermore, metal bonds are shock-resistant, and are suitable for very aggressive operating conditions. Metal bonds are mostly used in wet grinding. Special variants are crushable, brittle metal bonds that can be dressed on the machine in a special crushing process. These bonds are especially useful in creep feed grinding.

Electroplated Bonds

In this bond system, the metal bond is deposited electrolytically onto a bronze or steel body. The grit is tenaciously achored by the bond, and grain tips can protrude from the bond layer by 30 - 50 % of the grain diameter. This leads to a grinding layer with a very high material-removal-rate capability. However, only the outermost grain layer acts in this way, which is why these tools are mainly designed in single-layer versions. Such single layer bond systems are suitable for profiled wheel bodies of all kinds; profile accuracy is dependent on the grit size specified.

Vitrified Bonds

Vitrified bonds are based on fusible glasses combined with fillers and the abrasive grains. While resin and metal bonds are generally fully dense, vitrified bonds are usually produced with a defined porosity, and are available in different hardness levels. This variation in porosity and hardness is analogous to the vitrified bonds of conventional grinding wheels. The main features of vitrified bonds are:

- Good dressability and profileability
- Free-cutting due to the porosity and self sharpening behaviour
- Fluid availability, due to porosity, in the grinding zone allows cool grinding at low grinding forces
- High cutting speeds and material removal rates are possible.

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Concentration

According to the WINTER system, the concentration value defines the volume fraction of diamond or cBN in the abrasive layer as follows:

Diamond			
Concentration	Carat / cm³	Volume %	
C50	2,2	12,5	
C75	3,3	18,75	
C100	4,4	25	
C125	5,5	31,25	

cBN		
Concentration	Carat / cm³	Volume %
V120	2,09	12
V180	3,13	18
V240	4,18	24
V300	5,22	30

These definitions are not applicable for single layer electroplated tools.

Conditioning

Conditioning of a grinding wheel consists of dressing and cleaning:

Dressing		Cleaning
Profiling	Sharpening	
Influences macrostructure	Influences microstructure	Influences microstructure
Produces concentricity and grinding wheel profile	Generates topography and grain exposure by eroding the bond	Removes chips from chip space
Need: Shape or re-shape the wheel surface	Need: Create grit protrusion	Need: No change in the surface

Cubic Boron Nitride (cBN)

Boron nitride is found in two structural modifications: Cubic boron nitride (cBN) has the zinc-blende crystal structure equivalent to diamond, and has a hardness just a little below that of diamond. The graphite-like hexagonal modification of boron nitride (hBN) is soft and is used as a lubricant.

Compared to diamond, cBN has technological and economic advantages when grinding materials having a chemical affinity to carbon, such as steels and ferrous alloys. Applications for cBN are becoming increasingly economic, and cBN grinding of workpieces with hardness as low as 50 HRC have been demonstrated.

Diamond

Diamond is one of the three carbon modifications (the others are graphite and the fullerenes) and, with a Moh's hardness of 10, diamond is the hardest material known. The grinding (Rosiwal) hardness is 140 times higher than that of alumina. Because of its hardness and wear resistance, diamond is used for grinding hard, brittle and short-chipping materials. Examples are tungsten carbide, glass, ceramics, quarz, semiconductor materials, graphite and wear-resistant thermal spray alloys as well as hard-facing alloys, plastics with glass fiber reinforcement, and other difficult to machine materials. Both natural and synthetic diamonds are used in industrial applications.

WINTER

Profile

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

- WINTER Facts
- Profile Dressers
- Dresser Dresser
- CNC Dresser
- Stationary Dressers
- Ancillary
- Dressing Parameters
- Service Glossary Contact

- **Natural diamond:** these diamonds were created in the earth's mantle under high pressure and temperature (1200 1400°C). Both single crystals (octahedrons, triangles...) and crushed grit (boart) are used in industrial diamond tools
- Synthetic diamond: synthetic diamond grits are formed in presses in a very high pressure/high temperature (HP/HT)
 process, at up to 60000 bar and 1500°C, using a variety of solvent/catalyst materials which help to convert graphite
 into diamond
- MCD: large synthetic diamonds that are produced in a HP/HT process similar to synthetic diamond grit.
- PCD: polycrystalline diamond pieces formed by sintering micronized diamond particles together with a binder under HP/HT conditions.
- CVD: these diamonds are manufactured by gas phase deposition (methane, hydrogen) at low pressure using a
 vacuum system.

Direction of Rotation Indicator

Resin and metal bond diamond and cBN grinding wheels always show an indicator for the direction of rotation. At the end of the production chain of a multilayer grinding wheel is the profiling and sharpening process. In the sharpening process, a bond tail is formed behind each of the active abrasive grains. This bond tail supports the grain and prevents the grain from untimely fracture. If the wheel is mounted the wrong way round, this bond tail would precede the grains during cutting, which would lead to lower chip-space, increased grinding pressure, and early grain fracture. Therefore, it is important to adhere to the rotational direction shown by the indication arrow or to re-sharpen the grinding wheel before use, if you chose to change the direction of rotation.

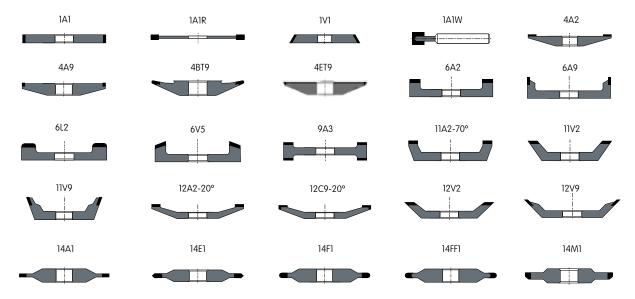
Dressing = Truing + Sharpening

It is necessary to distuinguish between the key wheel preparation steps of truing, sharpening and cleaning of the grinding wheel surface.

Dressing describes the processes of truing and sharpening a grinding wheel. When grinding with conventional alumina or silicon carbide wheels, "dressing" is the combined process of truing and sharpening. However, for superabrasive grinding wheels containing either diamond or cBN abrasives in a resin or metal bond, after truing, a separate sharpening step is usually required to remove some of the bond material and expose the grains. In addition, the grinding wheel surface must be cleaned (Dressing + Cleaning = Reconditioning) periodically. The dressing interval depends upon the grinding process parameters being used, and the type of workpiece material being ground.

Grinding wheel truing generates the correct geometric shape, develops the necessary concentricity, and also removes any surface contamination. In so doing, worn blunted grains are either removed or resharpened, and fresh grains are exposed. To achieve optimum results, dressing tools, dressing parameters and dressing strategy must be finely tuned to the grinding wheel and grinding process. Therefore, different tools and methods are used, such as either alumina-based or SiC sharpending stones, SiC grinding wheels, the WINTER brake-dressing device, CNC rotary dressers, diamond dressing sticks, rotary profile dressers, etc.

Our engineers can offer advice to help you chose the best method for your application.


FEPA

The Federation of European Producers of Abrasives (FEPA) is a non-profit European organisation which publishes safety guidelines and standards for conventional and superabrasive (diamond and cBN) grinding tools as well as loose abrasive grain (see grit sizes). It also provides standards for the most common grinding wheel shapes and dimensions.

FEPA-Shapes

These drawings show the most important grinding wheel geometries:

Grinding

According to DIN 8589, grinding is defined as material removal using geometrically undefined cutting edges. All grinding wheels with either diamond or cubic boron nitride (cBN) are grinding tools according DIN 8589. The "cutting edges" are composed of the diamond or cBN grit.

Grinding Ratio (G-Ratio)

The grinding-ratio is calculated as a ratio of the ground workpiece volume V_w to the wheel wear volume V_s .

Grinding Wheel Bodies

The body of a grinding wheel provides the static and dynamic stiffness to the tool. Dependent on the kind of grinding layer, it may consist of aluminium, filled resin, brass, steel or ceramics. The body significantly influences the vibration behaviour and the thermal conductivity of the grinding wheel; the following table shows examples for superabrasive grinding wheel bodies.

Body material type	Label	Vibration Absorbtion	Heat Transmission	Mechanical Stiffness
Resin with metal fillers	Н	medium	sufficient	good
Resin with non-metallic fillers	B or D	good	bad	satisfactory (not sufficient with thin- walled bodies)
Aluminium	А	bad	good	very good
Steel	E	bad	satisfactory	very good
Copper	С	bad	very good	very good
Composite material	CFK	good	bad	good

WINTER Facts

Profile Dressers

> Gear Dressers

CNC ressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

WINTER Facts

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Grit Sizes

The seive-sizes for diamond and cBN range according to FEPA standards (also ISO 6106) and are shown in the following table. As abrasives always contain a range of grit sizes, the values given for average grit sizes and particles per carat are approximations. D-prefix indicates diamond, while B-prefix refers to cBN.

FEPA grit size D or B	Standard [Mesh]	Average Grit Size [µm]	Particles per ct
1181	16/18	1100	60
1001	18/20	930	100
851	20/25	780	160
711	25/30	660	270
601	30/35	555	450
501	35/40	465	760
426	40/45	395	1200
356	45/50	330	2100
301	50/60	280	3500
251	60/70	233	6000
213	70/80	197	10000
181	80/100	167	16000
151	100/120	140	28000
126	120/140	118	46000
107	140/170	99	80000
91	170/200	83	135000
76	200/230	72	200000
64	230/270	63	300000
54	270/325	55	460000
46	325/400	47	750000
39	400/500	38	1400000
33	500/600	33	2100000

WINTER has its own classification for fine and microgrit sizes. FEPA standards are similar (M 63...M1.0).

WINTER diamond classification	Grit size [µm]
D 25	40 - 60
D 20 C	34 - 45
D 20 B	25 - 37
D 20 A	20 - 30
D 15	8 - 25
D 15 C	15 - 25

WINTER diamond classification	Grit size [µm]
D 15 B	10 - 20
D 15 A	8 - 15
D 10	6 - 10
D7	5 - 10
D 5	3 - 7
D 3	2 - 5
D1	0,5 - 2
D 0,7	0-1
D 0,25	0 - 0,5

Hardness of Abrasives

The hardness value of a material is generally influenced by the method of measurement. Different measuring methods and equipment result in different scales and units which cannot easily be compared. Thus several scales exist, for example:

Moh's hardness: abrasion behaviour (measure of scratch resistance)
Rosiwal hardness: stock removal behaviour (measure of resistance to stock removal)
Vicker's Microhardness: indentation behaviour (resistance to penetration)

In the following table, different hardness values for abrasives are given and compared to some reference materials:

Material	Moh's Hardness	Rosiwal Hardness	Vickers Microhardness (HV)
Diamond	10	140,000	10,000
cBN	9,9		9,000
Silicon carbide	9,6		2,600
Corundum	9	1.000	2,060
Quarz	7	120	1,120
Manganese	5	6.5	540
Gypsum	2	1.25	36
Talc	1	0.03	2.6

Diamond's stock removal resistance (Rosiwal hardness) is 140 times higher than corundum (alumina), even though its penetration hardness (Vickers) is only 5 times higher.

WINTER Facts

Profile Dressers

> Gea Dressers

CNC Pressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Material Removal Rate

The material removal rate, MRR or Q,, is expressed in mm³/s and defines the volume of workpiece material ground per unit time (second).

The specific material removal rate, MRR' or $Q'_{w'}$ refers to the removal rate per millimetre of wheel contact width and is expressed in units of [mm³/(s · mm)].

Parameters influencing Grinding Results

The table shows some correlations between process variables and the grinding results.

Influencing P	Appraisal criterion Paramters	Cutting Force F F= f()	Grinding Ratio G G= f()	Roughness R _a R _a = f()	Temperature ϑ ϑ = f()
ramters	Cutting Speed v _c (m/s)	F V _c	G V _c	R_a V_c	∂
Machine- and Operation Paramters	Material Removal Rate Q _w (mm³/s)	F Q _w	G Q_w	R_{α} Q_{w}	9 Q _w
Machine-	Coolant (Oil Content)	F Oil Content	G Oil Content	R _a Oil Content	9 Oil Content
Grinding Wheel	Grit Size (μm)	F Grit Size	G Grit Size	R _o Grit Size	9 Grit Size
Grindin	Concentration (Carat/cm³)	F Concentration	G Concentration	R _a Concentration	9 Concentration

WINTER

Profile **Dressers**

Gear

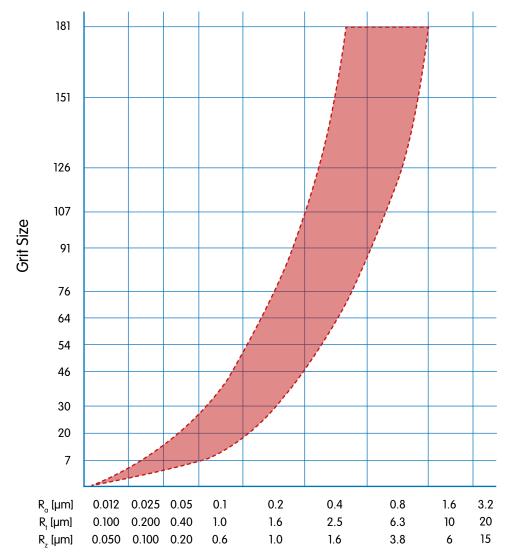
CNC

Stationary Dressers

Ancillary

Dressing Parameters

Service Glossary



Roughness

The surface roughness of a ground workpiece is influenced by many diverse parameters:

- Grit size of abrasive grain
- Concentration of abrasive grain
- Specification of bond system
- Type and hardness of work piece
- Grinding process
- Grinding parameters
- Dressing parameters

A general and qualitative correlation between grit size and surface roughness is shown below:

WINTER

Profile Dressers

Gear

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Specification

The specification is the general description of the grinding tool and contains all relevant information concerning the product's features. In general, the specification always contains the following details:

Example:

11V9	100-2-10-20	D126	K+888R	C75	Α
Shape	Dimension	Grit Size	Bond	Concentration	Body Material

Furthermore, the specification can contain additional information regarding drawing index, production method, structure, and other details.

Superabrasives

Diamond and cubic boron nitride are the hardest materials existing in industry today, according to the current state of knowledge. The levels of hardness of diamond and cBN are significantly higher than those of conventional abrasives like alumina (corundum) and silicon carbide (see hardness).

Wear effects on diamond and cBN

The hardness of an abrasive grit type alone is not sufficient to determine the grinding tool's grinding behaviour. Diamond and cBN grains can wear in many ways, causing different effects.

Primarily, there are two main types of wear.

Mechanical wear:

Abrasion, micro-chipping of cutting edges, grit macrofracture, and breakout of grain from the bond.

Chemical and thermal wear

Carbon diffusion, graphitization, oxidation, and reaction with grinding fluids.

Diamond not only reacts with iron (above a certain threshold temperature), but also with chromium, vanadium and tungsten. cBN does not show chemical reaction with iron or other metals.

Therefore, cBN has proven to give better tool performance when machining, for example, high speed steel, although it is not as hard as diamond.

An outward sign of the occurance of thermo-chemical wear is the rapid appearance of wear flats on the grains, when no grain chipping from mechanical wear is present.

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

	Ľ	
	6	
	K	
	ü	
	0	
		í

WINTER

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

-	ro	file	9
)re	SS	ers

WINTER Facts

Gear	
0001	
Dresse	rs

-	N/C
-	AC.
D	resser

Droccore	C	٠.	÷÷.	^	n	~	'n
Droccore	0	IU	Ш	v	11	u	ı
				_	_		

Δ		larv
		,
	raci	core

Dressing

In		PX
	U	C へ

37	-	see page 37 in this catalogue		
C1	-	see catalogue No. 1 "Automotive, Turbines, B	earings"	
C2	_	see catalogue No. 2 " Tools "		
C3	_	see catalogue No. 3 "Flat and Crystal Glass"		
C4	_	see catalogue No. 4 "Electronics and Photovo	oltaics, Optics, Ceramics & Composites"	
C6	-	see catalogue No. 6 "WINTER Standard Catal	ogue"	
Α			Check sheet for	
Acous	stic em	ission system (AE signal)114	dressing discs	57
Actua	l surfa	ce roughness, influencing	making a diamond dressing gear	
para	ımeter	s for profile rotary dresser113	for hob grinding	36
Advice	e	118	making a diamond dressing gear	
			for honing and continuous profile grinding	37
			profile roller dressers	28
В			stationary dressing tools	96
Ball tr	ack	C1	Chip breaking flute grinding	C2
Band	saws		Circular knife grinding	C2
- with	diamo	onds C4	Clearance angle, grinding of	C2
- mac	hining	ofC2	CNC-dressing tools (SG, TS, PCD/	
Bearir	ngs	C1	CVD/MCD), SD, UZ, DDS)	40
Beveli	ng	C3	Composites, grinding tools for	C4
Beveli	ng pro	ofile grinding wheelC4	Concave generating tools and rounding tools	C4
Blade	dress	ers (Fliesen)	Concentration	12
Brake	pads.	C1	Con-rods	C
			Constant velocity joint	C
			Continuous dressing	11
C			Continuous generation grinding	32
Cade	windo	wC1	Coordinate grinding	C2
		C1	Core drill with counter sink	C3
		C1	Counter-direction	11
		poron nitride)121	Crankshaft	C
•		ingC1	Crushable bond	C2
		nd bevelling wheels single part design C4	Crystal glass	C3
	ring w		Cubic boron nitride	12
	-	tor partC4	Cup-wheels	
	-	aptor partC4	- for spherical, aspherical and toric surfaces	C4
		echnical notes	- for surface grinding	C4
Cerne	iliy, K	C4	- body dimensions and machine, connections for	C2
			- technical notes	C4

ndex

WINTER

Cut-off wheels	C2, C3, C4	- stationary dresser	58
Cut-off wheels		- TS dressing discs	46
- cBN	C4	- UZ dressing discs	51
- diamond	C4	Dressing of grinding wheels made of	
- for optical glass	C4	ceramic grains	
CVD rotary dresser	48	- CVD/MCD rotary dresser	48
Cylinder liners	C1	- stationary dresser	58
		Dressing parameters	106
		Dressing pins	C2, C6
D		Dressing sticks	100, C6
DDS rotary dresser	52	Dressing tools	
Decor grinding	C3	- WINTER cleaning and sharpening stones	103, C2
Design and tolerances for profile roller dress	ser 21	- for machining gear components	30
Diamond	121	- for vitrified bonded grinding tools	100
Diamond blades		- resin bonded grinding tools	102
- with natural grit	70	Dressing unit	103, C2, C6
- with natural diamond	68	Drilling	C4
- with CVD needle blades	66	Drills, Machining of	C2
- with MCD needle blades	64	Dry grinding (re-sharpening)	C2
Diamond cut-off wheels for optical glass	C4		
Diamond Dressing System (DDS)	52		
Diamond		E	
- files	C2	Edge Grinding	C4
- grit size and dwell revolution	113	Electroplated diamond wire	C4
- hollow drills	C4	Electroplated bonds	C2
- lapping media	C2	End Mill, machining of	C2
- pastes	C2		
- polishing media	C2		
- saw blades	C4	F	
- suspension	C2	Face grinding (tungsten carbide saw blade)	C2
- wire	C4	Faces of gear shaft	
Direction of Rotation Indicator	122	FEPA	
Double disk grinding (inserts)	C2	Ferrites and magnetic materials,	
Double taper disk and roller dresser (HP und	d VU) 33	grinding tools for	C4
Dressing	122	Field Instrumentation System (FIS)	
Dressing cylinder	. 102, C2, C6	Files	
Dressing of vitrified bonded cBN grinding		Finishing with pellets	C4
wheels,		Fire-proof glass	
- SD dressing discs	50	FIS (Field Instrumentation System)	
- SG dressing discs	42	Flank grinding (tungsten carbide saw blade	
- TS dressing discs	46	Flat belt	
Dressing of conventional grinding wheels		Flat grinding	C2, C4
- SD dressing discs	50	Flat knife grinding	
- SG dressing discs	42	Flute grinding	

Dressing Parameters

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Service Glossary Contact

Full profile rotary dresser (VU)	32	- profiling	
Furioso stationary dresser	62	- top and bottom grinding	
G		J	
Gashing	C2	Jig grinding	
Gear shaft	C1	Journals	C1
Gemstones, grinding tools for	C4		
Glass edge,			
- CNC machines	C3	K	
- C-profile	C3	Knife grinding	
- Straight profile	C3	g	
- Trapezoid profile	C3		
		L	
		Laminated safety glass	C3
н		Lapping and polishing	C4
Hand dressers (manual dressers)		Lapping media	
Hardness of abrasives		Level+	
Hob grinding	C2	Linear glass edges, machining of	C3
Hollow drill, machining of glass	C3		
Hollow glass	C3		
Hollow tooth grinding	C2	M	
Honing processes, dressing tools for	32	Machine requirements for dressing with	
Hydraulic Cam Follower	C1	diamond profile rotary dresser	24
		Material removal rate (MRR)	
		Maxi programme	
l .		MCD rotary dresser	
ID grinding	C2, C4	Mdress - a mobile dressing unit	
ID saw blades	C4	Micron grit sizes	
lgel®	89	μicro+ grinding wheels	
Infeed, a _{ed} , when dressing with		Mould-and-die industry	
rotary profile dressers	110	Mounting and demounting of profile	02
Infeed, a _{ed} , when dressing with		roller dresser	26
stationary dresser and CNC-		MSL TM	
controlled rotary dresser	109	WOL	CI
Infiltrated rotary dresser			
Influencing parameters			
Ingot grinding		N	
Injection needle		Notch grinding	
Insert+		Notes for tool selection, stationary dresser	
Inserts,		Nozzle body	C1
- machining of			

Fuel injection systemC1

ndex

WINTER

0	RFID (Radio Fre
OD grinding	Rim machining
OD grinding (Ingot)	Rolling elemen
Overlap ratio U _d for stationary and	Rondist/rotatal
CNC-controlled rotary dressing tools110	Rotation directi
	Roughing mill (
	Roughness, po
P	
Parameter influencing grinding results126	
PcBN machining	S
PCD grindingC2	Safety glass
PCD, CVD, MCD rotary dresser	Saw blade
Pellets,	- (HSS), machir
- finishing with	- (Stellite), mac
- technical notes for application of	- (tungsten car
Peripheral grinding (inserts)	SD rotary dress
Plastics, grinding tools for	SG rotary dress
PolishingC2, C4	Shank tools,
Polishing pastes	- glass industry
Process analysis119	- machining of
Process optimization118	Shapes (grindi
pro-dress®91	Sharpening sti
Product development118	- for advanced
Profile diamonds, ground77	- for glass indu
Profile grindingC2	Sharpening too
Profile grinding, dressing tools for14, 30, 38, 74	Single Point dre
Profile knives, machining of	- with synthetic
profile S	Single pointer v
Profiling (inserts)	Single taper di
	Sintered mater
	Sintered metal
Q	Specification of
Q-Flute grinding wheels	Speed ratio qd
Quantum+ grinding wheels	Spherical surfa
Q'w = Specific MRR (Specific Material Removal Rate). 126	Stock program
	Superabrasives
	Surface grindin
R	- cup-wheels fo
Races	- optical glass
Radio Frequency Identification (RFID)119	Surface roughr
Refractory, grinding tools for	Suspensions
Re-sharpening grinding tools	
Resin hands 120	

RFID (Radio Frequency Identification)	119
Rim machining	C3
Rolling elements	C1
Rondist/rotatable stationary dresser	82
Rotation direction indicator	122
Roughing mill (knurled profile)	C2
Roughness, parameter	127
S	
Safety glass	C3
Saw blade	
- (HSS), machining of	C2
- (Stellite), machining of	C2
- (tungsten carbide), machining of	C2
SD rotary dresser	50
SG rotary dresser	42
Shank tools,	
- glass industry	C3
- machining of	C2
Shapes (grinding wheel geometries)	123
Sharpening sticks	
- for advanced materials	C4
- for glass industry	C3
Sharpening tools	C2
Single Point dressing diamonds	
- with synthetic needle	74
Single pointer with natural diamond	80
Single taper disk (HP)	32
Sintered materials, grinding tools for	C4
Sintered metal bonds	120
Specification of grinding wheel	128
Speed ratio qd' for rotary dresser	111
Spherical surfaces, cup-wheels for	C4
Stock programme	C6
Superabrasives	128
Surface grinding	C4
- cup-wheels for	C4
- optical glass	C4
Surface roughness, parameter	127
Suspensions	C2

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

Stationary Dressers

other Dressers

Dressing Parameters

T	
Technical ceramics, grinding tools for	C4
Technical glasses, grinding tools for	C4
Technical notes, machining of glass	C3
Tiger grinding wheels	C2
Ti-Tan stationary dresser	62
Tooth flank honing	32
Top grinding (tungsten carbide saw blade)	C2
Top and bottom grinding (inserts)	C2
Toric surfaces, Cup-wheels for	C4
Training	118
Trapezoid profile, glass machining	C3
Trouble shooting rotary dresser	27
TS rotary dresser	46
Turbine blades	C1
Turbine casing	C1
U	
Uni-direction	111
UZ-rotary dresser	51
v	
Valve	C1
Vitrified bonds	120
w	
Wear effects on diamond and cBN	128
WINTER stone	

	Ē
U	
а	
ĸ	á
и	3
U	ę

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

other Dressers

Dressing Parameters

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Dressing Parameters

Catalogue No. 1: Automotive, Turbines, Bearings

WINTER Diamond and cBN Tools for the Automotive, Turbine and Bearing Industries

Catalogue No. 2: Tools

WINTER Diamond and cBN Tools for the Tools Industry

Catalogue No. 3: Flat and Crystal Glass

WINTER Diamond Tools for Machining Flat and Crystal Glass

Catalogue No. 4: Electronics, Photovoltaics , Optics, Ceramics and Composites WINTER Diamond and cBN Tools for the Electronic and Photovoltaic Industries, for

plamond and cBN Tools for the Electronic and Photovolfaic Industries, for Machining Optical Glass, Ceramics & Composites

Catalogue No. 5: Dressing Tools

WINTER Diamond Tools for Dressing of Grinding Tools

Catalogue No. 6: Standard Catalogue

WINTER Stock Programme for Diamond and cBN Tools

Stationary Dressers

> Ancillary Dressers

WINTER Facts

Profile Dressers

Gear

CNC Dressers

Dressing Parameters

WINTER Facts

Profile Dressers

Gear Dressers

CNC Dressers

Stationary Dressers

Ancillary Dressers

Thank you to Ella, who had her photo taken for our front cover. Ella's father works in our sales department.

Service Glossary Contact

Dressing Parameters

Contact

Whom to ask first? Who is my nearest contact person? Where can I get quick and easy help on grinding tools and grinding processes?

For your inquiries please ask your sales engineer:

WINTER

Profile Dressers

Gear

Profile Dressers

Stationary Dressers

> Ancillary Dressers

Dressing Parameters

> Service Glossary Contact

Saint-Gobain Diamantwerkzeuge GmbH & Co. KG Schützenwall 13-17 DE-22844 Norderstedt

Telefon: +49 - (0)40 - 52 58 0 Fax: +49 - (0)40 - 52 58 215 E-Mail: info.winter@saint-gobain.com

www.winter-superabrasives.com

HEIDE 10 B-1780 WEMMEL BELGIUM TEL: +32 2 267 21 00 FAX: +32 2 267 84 24

SAINT-GOBAIN ABRASIVES N.V.

SAINT-GOBAIN ABRASIVES, S.R.O. VINOHRADSKÁ 184
130 52 PRAHA 3
CZECH REPUBLIC
TEL: +420 267 132 256
FAX: +420 267 132 021

SAINT-GOBAIN ABRASIVES A/S KORSKILDEENG 5 DK-2670 GREVE DENMARK TEL: +45 467 552 44 FAX: +45 467 550 60

SAINT-GOBAIN ABRASIFS
PO BOX 18260
SUITE 404/405 - LOB17
JEBEL ALI FREE ZONE
UAE-DUBAI
UNITED ARAB EMIRATES
TEL: +971 4 88 17 836
FAX: +971 4 88 73 210

SAINT-GOBAIN ABRASIFS RUE DE L'AMBASSADEUR - B.P.8 78 702 CONFLANS CEDEX FRANCE TEL: +33 (0)1 34 90 40 00 FAX: +33 (0)1 39 19 89 56

SAINT-GOBAIN DIAMANTWERK-ZEUGE GMBH & CO. KG SCHUETZENWALL 13-17 D-22844 NORDERSTEDT GERMANY TEL: + 49 40 5258-0 FAX:+49 40 5258-215

SAINT-GOBAIN ABRASIVES KFT 1225 BP.BÁNYALÉG U. 60/B H-1225 BUDAPEST HUNGARY TEL: +36 1 371 22 50 FAX: +36 1 371 22 55 SAINT-GOBAIN ABRASIVI S.P.A VIA PER CESANO BOSCONE 4 I-20094 CORSICO MILANO ITALY TEL: +39 024 4851

FAX: +39 024 478 266

SAINT-GOBAIN ABRASIVES S.A.
190 RUE J.F. KENNEDY
GRAND DUCHE DE LUXEMBOURG
L-4930 BASCHARAGE
TEL: +352 50 40 1 1
FAX: +352 50 16 33
NO. VERT (FRANCE) 0800 906 903

SAINT-GOBAIN ABRASIFS, S.A. 2 ALLÉE DES FIGUIERS AÏN SEBAÂ - CASABLANCA MOROCCO TEL: +212 22 66 57 31 FAX: +212 22 35 09 65

SAINT-GOBAIN ABRASIVES BV GROENLOSEWEG 28 NL-7151 HW EIBERGEN P.O. BOX 10 NL-7150 AA EIBERGEN THE NETHERLANDS TEL: +31 545 466466 FAX: +31 545 474605

SAINT-GOBAIN ABRASIVES AS VESTVOLLVEIEN 6D N-2019 SKEDSMOKORSET NORWAY TEL: +47 63 87 06 00 FAX: +47 63 87 06 01

SAINT-GOBAIN ABRASIVES SP.Z UL. TORUNSKA 239/241 PL-62-600 KOLO POLAND TEL: +48 63 26 17 100 FAX: +48 63 27 20 401

SAINT-GOBAIN ABRASIVOS, L. DA ZONA INDUSTRIAL DA MAIA I-SECTOR VIII , NO. 122 APARTADO 6050 P-4476 - 908 MAIA PORTUGAL TEL: +351 229 437 940

FAX: +351 229 437 949

SAINT-GOBAIN ABRASIVI SRL PARC INDUSTRIAL HOLROM DRUM CAREI NR. 11 RO-447355 VETIS JUD. SATU-MARE ROMANIA TEL: +40 261 450 009 FAX: +40 261 750 010

SAINT-GOBAIN ABRASIVES 18/3, DOLGORUKOVSKAYA STR. RUS-127006 MOSCOW, RUSSIA TEL: +74959373223 FAX: +74959373224

SAINT-GOBAIN ABRASIVOS, S.A. CTRA. DE GUIPÚZCOA, KM. 7,5 E-31195 BERRIOPLANO (NAVARRA) SPAIN TEL: +34 948 306 000 FAX: +34 948 306 042

SAINT-GOBAIN ABRASIVES AB NORRA MALMVÄGEN 76 S-19162 SOLLENTUNA SWEDEN TEL: +46 8 580 881 00

TEL: +46 8 580 881 00 FAX: +46 8 580 881 01

SAINT-GOBAIN ABRASIVES
BUYUKDERE CAD. BAHCELER SOK.
EFE HAN NO.20, K1
MECIDIYEKOY
TR-34394 ISTANBUL
TURKEY
TEL: +90 212 288 6371
FAX: +90 212 275 6734

SAINT-GOBAIN ABRASIVES LTD. DOXEY ROAD STAFFORD ST16 1EA UNITED KINGDOM TEL: +44 1785 222 000 FAX: +44 1785 213 487

SAINT-GOBAIN

SAINT-GOBAIN
DIAMANTWERKZEUGE
GmbH & Co. KG
SCHÜTZENWALL 13-17
D-22844 NORDERSTEDT
GERMANY
TEL: + 49 40 5258-0

FAX:+49 40 5258-215

#2248 Ausgabe 2012